Internal Assessment Test II – Dec. 2021

	Internal Assessment Test II – Dec. 2021			
Sub:	Digital Image Processing Sub Code: 17EC72/15 EC72	Branch:	EC	Е
Date:	17-12-2021 Duration: 90 Minutes Max Marks: 50 Sem / Sec: 7E		OB	Е
	Answer any FIVE FULL questions	MARKS	СО	RBT
1	Explain image smoothing in frequency domain using ideal low pass filter,	[10]	CO3	L1,L2
	Butterworth low pass filter and Gaussian low pass filtering			
2	The following table gives the number of pixels at each of the gray levels 0 to 7	[10]	CO3	L2
	in an image:			
	r_k 0 1 2 3 4 5 6 7			
	n_k 123 78 281 417 639 1054 816 688			
	Draw the corresponding histogram. Perform histogram equalization and draw			
2 (0)	the resulting histogram Compute median value of the marked pixel using 3X3 mask	[04]	CO3	L2
3 (a)	Compute median value of the marked pixer using 3A3 mask	[04]	003	LZ
	64 (22) 0 (10) (100) 90			
	6 3 (9) 11 110 0			
	10 23 22 12 1 1			
3 (b)	Explain the basic steps for filtering in frequency domain.	[06]	CO3	L1
4	Explain homomorphic filters for image enhancement with necessary equations,			
	block diagram and transfer function.			
		[10]	CO3	L1
5 (a)	Define 2D DFT with respect to a 2D DFT of an image, and state the following	[06]	CO3	L1
	properties			
	a) Translation, b) Rotation, c) Periodicity, and d) Convolution theorem			
5 (b)	Explain Gradient filtering in images.	[04]	CO3	L1
6	Histogram of a 64X64 image is given below:	[10]	CO3	L2
	r_k 0 1 2 3 4 5 6 7 n_k 81 122 245 329 656 850 1023 790			
	1_K 01 122 273 327 030 030 1023 770			
	It is desired to transform this histogram to a new histogram given below:			
	z_k 0 1 2 3 4 5 6 7			
	p(z_k) 0.15 0.20 0.30 0.20 0.15 0 0			

Sub:	Digital Image Processing		1	Sub Code:	17EC72/15EC72	Branch:		
Date:	17-12-2021 Duration: 90 Minute	s Max Marks:	50	Sem / Sec:	7E			
	Answer	any FIVE FULL q	uestio	ns		MARKS		
1	Explain image smoothing in frequency domain using ideal low pass filter, Butterworth low							
	pass filter and Gaussian low pass t	iltering						
	The edges and other sharp transition							
	contribute significantly to the high							
	Hence blurring (smoothing) is achi		ency	domain by a	ittenuating high			
	frequencies in the transform of a g	ven image.						
		G(u, v) = H(u, v)) F(u	, v)				
				,				
	where F (u, v) is the Fourier transf				•			
	to select a filter transfer function F frequency components of F (u, v).							
	smoothed image $g(x, y)$.	The miverse trans	510111	t then will yi	era ine desirea			
	Ideal Filter:							
	A 2-D ideal lowpass filter (ILPF) i	e one whose tran	cfar t	inction satis	efies the relation			
	A 2-D ideal lowpass litter (ILI I') i	s one whose train	S1C1 1	unction saus	siles the relation			
	· .	1 if $D(u, v)$	≤ <i>D</i> ₀					
	$H(u, v) = \begin{cases} 1 & \text{if } D(u, v) \leq D_0 \\ 0 & \text{if } D(u, v) > D_0 \end{cases}$							
	where D is a specified nonnegative		ı, v) i	s the distanc	ee from point (u,			
	v) to the origin of the frequency plane; that is,							
	D(u, v)	$= (u^2 + v^2)^{1/2}.$						
	Figure 1(a) shows a 3-D perspective plot of H (u, v) as a function of u and v.							
	The name ideal filter indicates that all frequencies inside a circle of radius Do							
	are passed with no attenuation, wh	ereas all frequen	cies o	outside this c	ircle are			
	completely attenuated.							
	EE/m +0	H(u, v)	: . ·		er Ar			
	A(0, V)		Ξ,		<u>.</u>			
	I	1	7					
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	14.72	\$ ·			
	The state of the s	, 0	D ₀	D(a	, v)			
	(a)		(ъ)					
	,	~ ~						

Fig. 1a) Perspective plot of an ideal lowpass filter transfer function; (b) filter crosssection.

The lowpass filters are radially symmetric about the origin. For this type of filter,

specifying a cross section extending as a function of distance from the origin along a radial line is sufficient, as Fig. 1 (b) shows. The complete filter transfer function can then be generated by rotating the cross section 360 about the origin. Specification of radially symmetric filters centered on the N x N frequency square is based on the assumption that the origin of the Fourier transform has been centered on the square.

For an ideal lowpass filter cross section, the point of transition between H(u, v) = 1 and H(u, v) = 0 is often called the cutoff frequency. In the case of Fig.1 (b), for example, the cutoff frequency is Do. As the cross section is rotated about the origin, the point Do traces a circle giving a locus of cutoff frequencies, all of which are a distance Do from the origin.

Butterworth low pass filter

The transfer function of the Butterworth lowpass (BLPF) of order n and with cutoff frequency locus at a distance Do, from the origin is defined by the relation

$$H(u, v) = \frac{1}{1 + [D(u, v)/D_0]^{2a}}$$

A perspective plot and cross section of the BLPF function are shown in figure 2.

Fig.2 (a) A Butterworth lowpass filter (b) radial cross section for n = 1.

Unlike the ILPF, the BLPF transfer function does not have a sharp discontinuity that establishes a clear cutoff between passed and filtered frequencies. For filters with smooth transfer functions, defining a cutoff frequency locus at points for which H (u, v) is down to a certain fraction of its maximum value is customary. In the case of above Eq. H (u, v) = 0.5 (down 50 percent from its maximum value of 1) when D (u, v) = Do. Another value commonly used is $1/\sqrt{2}$ of the maximum value of H (u, v). The following simple modification yields the desired value when D(u, v) = Do:

$$H(u, v) = \frac{1}{1 + [\sqrt{2} - 1][B(u, v)/D_0]^{2a}}$$
$$= \frac{1}{1 + 0.414[D(u, v)/D_0]^{2a}}.$$

It also serves as a common base for comparing the behavior of different types of filters.

The sharp cutoff frequencies of an ideal lowpass filter cannot be realized with electronic components, although they can certainly be simulated in a computer.

Gaussian Lowpass Filters:

The form of these filters in two dimensions is given by

$$H(u, v) = e^{-D^2(u, v)/2\sigma^2}$$

where, D(u, v) is the distance from the origin of the Fourier transform.

a b c

Fig.3 (a) Perspective plot of a GLPF transfer function, (b) Filter displayed as an image, (c) Filter radial cross sections for various values of Do.

 σ is a measure of the spread of the Gaussian curve. By letting σ = Du, we can express the filter ina more familiar form in terms of the notation:

$$H(u, v) = e^{-D^2(u, v)/2D_0^2}$$

where Do is the cutoff frequency. When D (u, v) = Do, the filter is down to 0.607 of its maximum value.

The following table gives the number of pixels at each of the gray levels 0 to 7 in an image:

 r_k
 0
 1
 2
 3
 4
 5
 6
 7

 n_k
 123
 78
 281
 417
 639
 1054
 816
 688

Draw the corresponding histogram. Perform histogram equalization and draw the resulting histogram

[10]

Total no. of pixels: sum of all $n_k = \sum_{k=0}^{7} n_k = (123 + 78 + 281 + 417 + 639 + 1054 + 816 + 688) = 4096$

Normalized histogram

r_k	n_k	$p_r(r_k)$	cdf	Cdf*(L-1)	s_k
0	123	123/4096=0.03	0.03	0.03*7=0.21	0
1	78	78/4096=0.02	0.05	0.05*7=0.35	0
2	281	281/4096=0.07	0.12	0.12*7=0.84	1
3	417	417/4096=0.10	0.22	0.22*7=1.54	2
4	639	639/4096=0.16	0.38	0.38*7=2.66	3
5	1054	1054/4096=0.26	0.64	0.64*7=4.48	4
6	816	816/4096=0.20	0.84	0.84*7=5.88	6
7	688	688/4096=0.17	1	1*7=7	7

s_k	$p_s(s_k)$
0	0.03+0.02=0.05
1	0.07
2	0.10
3	0.16
4	0.26
5	0
6	0.20
7	0.17

Resulting histogram:

3 (a) Compute median value of the marked pixel using 3X3 mask

20	18	33	12	120	122
64	(22)	0	(10)	(100)	90
6	3	(9)	11	110	0

[04]

10	23	22	12	1	1		
	•	•					
Usin	g a 32	K3 mas	sk for	nixel ((2.2):		
20	18	33	12	120	122		
<mark>64</mark>	(22)	0	(10)	(100)	90		
6	3	(<mark>9</mark>)	11	110	0		
10	23	22	12	1	1		
Ord	ering	the pix	el val	ues in	increa	asing order:	
[0	- 6						
3							
6							
9							
18							
20							
22							
33							
64]	4.0						
Whe	re 18	is the 1	media	n valu	e		
Usin	g a 32	K3 mas	sk for	pixel ((4,2):		
20	18	<mark>33</mark>	12	120	122		
64	(22)	0	10	100	90		
6	3	(<mark>9</mark>)	11	<mark>110</mark>	0		
10	23	22	12	1	1		
Orde	ering t	he pix	el valu	ies in	increa	sing order:	
[0]							
9							
10							
11							
12							
33							
100							
110							
120]							
		is the 1	media	n valu	e		
** 110	10 12	is the l	incuia	ıı valu			
Hein	g a 21	K3 mas	sk for	nivel /	(5.2).		
20	g a 32	33	12	120	122		
64	(22)	0	(10)	(100)	90		
6	3	(9)	11	110	0		
10	23	22	12	1	1		
L						asing order:	
	cimg	ше ріх	ci val	ucs III	mere	ong order.	
[0							
10							
11							
12							
90							
100							1

122]

	Where 90 is the median value Using a 3X3 mask for pixel (3,3): 20	
	22	
	22 23]	
	Where 11 is the median value	
3 (b)	Explain the basic steps for filtering in frequency domain. 1. Given an input image $f(x,y)$ of size MXN, obtain the padding parameters P and Q using the following equations: $P \ge M + C - 1$ and $Q \ge N + D - 1$ where the mask used for filtering is of the size CXD. Typically, we select P=2Mand Q=2N. 2. Form a padded image $f_p(x,y)$ of size PXQ by appending the necessary number of zeros to $f(x,y)$ 3. Multiply $f_p(x,y)$ by $(-1)^{x+y}$ to center its transform.	[06]
	 4. Compute the DFT, F(u,v), of the image from step 3. 5. Generate a real, symmetric filter function H(u,v) of size PXQ with senter at co-ordinates (P/2,Q/2). Form the product: G(u,v)=F(u,v)H(u,v) 	
	Using array multiplication, i.e. $G(i,k)=F(i,k)H(i,k)$ 6. Obtain the processed image:	
	$g_p(x,y) = \{real[\mathfrak{F}^{-1}[G(u,v)]]\}(-1)^{x+y}$	
	Where the real part is selected in order to ignore parasitic complex components resulting from the computational inaccuracies and the subscript p indicates that we are dealing with padded arrays.	
	7. Obtain the final processes result $g(x, y)$, by extracting the MXN region from the top, left quadrant of $g_p(x, y)$	
4	Explain homomorphic filters for image enhancement with necessary equations, block	
	diagram and transfer function. An image $f(x,y)$ can be expressed as the product of its illumination $i(x,y)$ and reflectance $r(x,y)$, components:	[10]
	f(x,y) = i(x,y)r(x,y) This equation cannot be used directly to operate on the frequency components of illumination and reflectance because the Fourier transform of a product is not the product of the transforms:	
	$\Im[f(x,y)] \neq \Im[i(x,y)]\Im[r(x,y)]$ However, we can define:	
	Then, $z(x,y) = \ln(f(x,y)) = \ln(i(x,y)) + \ln(r(x,y))$ $\Im[z(x,y)] = \Im[\ln(f(x,y))]$ $= \Im[\ln\{i(x,y)\}] + \Im[\ln\{r(x,y)\}]$	

Or

$$Z(u,v) = F_i(u,v) + F_r(u,v)$$

Where $F_i(u, v)$ and $F_r(u, v)$ are the Fourier transform of $\ln\{i(x, y)\}$ and $\ln\{r(x, y)\}$, respectively.

We can filter Z(u,v) using a filter H(u,v), such that:

$$S(u, v) = H(u, v)Z9u, v = H(u, v)F_i(u, v) + H(u, v)F_r(u, v)$$

The filtered image in the spatial domain is

$$s(x,y) = \Im^{-1}\{S(u,v)\}$$
 = $\Im^{-1}\{H(u,v)F_i(u,v) + H(u,v)F_r(u,v)\}$

By defining

$$i'(x,y) = \Im^{-1}\{H(u,v)F_i(u,v)\}$$
, and

$$r'(x,y) = \Im^{-1}\{H(u,v)F_r(u,v)\},$$

Therefore

$$s(x,y) = i'(x,y) + r'(x,y)$$

Finally because z(x,y) was formed by taking natural logarithm of the input image, we reverse the process by taking the exponential of the filtered result to form the output image:

$$g(x,y) = e^{s(x,y)}$$

$$= e^{i'(x,y)}e^{r'(x,y)}$$

$$= i_0(x,y)r_0(x,y)$$

Where,

$$i_0(x,y) = e^{i'(x,y)}$$
 and $r_0(x,y) = e^{r'(x,y)}$

Are the illumination and reflectance components of the output (processed) image.

The filter H(u,v) is called the homomorphic filter. The key approach is the separation of the illumination and reflectance components. The illumination component of an image generally is characterized by the slow spatial variation

While the reflectance component tends to vary abruptly particularly at the junctions of dissimilar objects. These characteristics lead to associating the low frequencies of the Fourier transform of the logarithmic of an image with illumination and high frequencies with reflectance. Better control can be gained over the illumination and reflectance components with a homomorphic filter. This control requires specification of a filter function H(u,v) that affects the low- and high- frequency components of the Fourier transform in different, controllable ways

5 (a) Define 2D DFT with respect to a 2D DFT of an image, and state the following propertiesb) Translation, b) Rotation, c) Periodicity, and d) Convolution theorem

[06]

For an $M \times N$ 2D image f(x,y), 2D DFT is defined as follows:

$$F(u,v) = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) e^{-j2\pi \left(\frac{ux}{M} + \frac{vy}{N}\right)},$$

Where u=0,1,2,...,M-1, and v=0,1,2,....,N-1

Inverse 2D-DFT:

$$f(x,y) = \frac{1}{MN} \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F(u,v) e^{j2\pi \left(\frac{ux}{M} + \frac{vy}{N}\right)}$$

a) Translation in frequency domain:

FT{
$$f(x,y)e^{j2\pi(\frac{u_0x}{M}+\frac{v_0y}{N})}$$
} = $F(u-u_0, v-v_0)$

Translation in time domain:

$$FT\{f(x-x_0,y-y_0)\}=F(u,v)e^{-j2\pi\left(\frac{ux_0}{M}+\frac{y_0v}{N}\right)}$$

b) Rotation:

$$FT{f(r, \Theta + \Theta_0)}=F(\omega, \Phi + \Theta_0)$$

Where, $x = r\cos\theta$, $y = r\sin\theta$, $u = \omega\cos\Phi$, $v = \omega\sin\Phi$

c) Periodicity:

$$f(x,y) = f(x + k_1M, y) = f(x, y + k_2N) = f(x + k_1M, y + k_2N)$$

$$F(u, v) = F(u + k_1 M, v) = F(u, v + k_2 N) = F(u + k_1 M, v + k_2 N)$$

d) Convolution Theorem

$$FT{f(x,y) * h(x,y)} = F(u,v)H(u,v)$$

5 (b) Explain Gradient filtering in images.

First-order derivatives of a digital image are based on various approximations of the 2-D gradient. The gradient of an image f(x, y) at location (x, y) is defined as the vector

$$abla \mathbf{f} = \begin{bmatrix} \boldsymbol{G}_{*} \\ \boldsymbol{G}_{y} \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}.$$

It is well known from vector analysis that the gradient vector points in the direction of maximum ate of change of f at coordinates (x, y). An important quantity in edge detection is the magnitude

of this vector, denoted by Af, where

$$\nabla f = \text{mag}(\nabla \mathbf{f}) = [\mathbf{G}_x^2 + \mathbf{G}_y^2]^{1/2}.$$

This quantity gives the maximum rate of increase of f(x, y) per unit distance in the direction of Af. It is a common (although not strictly correct) practice to refer to Af also as the gradient. The direction of the gradient vector also is an important quantity. Let $\alpha(x, y)$ represent the direction angle of the vector Af at (x, y). Then, from vector analysis,

$$\alpha(x, y) = \tan^{-1}\left(\frac{G_y}{G_x}\right)$$

where the angle is measured with respect to the x-axis. The direction of an edge at (x, y) is perpendicular to the direction of the gradient vector at that point. Computation of the gradient of

[04]

an image is based on obtaining the partial derivatives &f/&x and &f/&y at every pixel location. Let the 3x3 area shown in Fig. 1.1 (a) represent the gray levels in a neighborhood of an image. One of the simplest ways to implement a first-order partial derivative at point z_5 is to use the

following Roberts cross-gradient operators:

$$G_x = (z_9 - z_5)$$

and

$$G_y = (z_8 - z_6).$$

These derivatives can be implemented for an entire image by using the masks shown in Fig. 1.1(b). Masks of size 2 X 2 are awkward to implement because they do not have a clear center. An approach using masks of size 3 X 3 is given by

$$G_x = (z_7 + z_8 + z_9) - (z_1 + z_2 + z_3)$$

and

$$G_y = (z_3 + z_6 + z_9) - (z_1 + z_4 + z_7).$$

A weight value of 2 is used to achieve some smoothing by giving more importance to the center point. Figures 1.1(f) and (g), called the Sobel operators, and are used to implement these two equations. The Prewitt and Sobel operators are among the most used in practice for computing digital gradients. The Prewitt masks are simpler to implement than the Sobel masks, but the latter have slightly superior noise-suppression characteristics, an important issue when dealing with derivatives. Note that the coefficients in all the masks shown in Fig. 1.1 sum to 0, indicating that they give a response of 0 in areas of constant gray level, as expected of a derivative operator.

The masks just discussed are used to obtain the gradient components G_x and G_y . Computation of the gradient requires that these two components be combined. However, this implementation is not always desirable because of the computational burden required by squares and square roots. An approach used frequently is to approximate the gradient by

							∇f	$\approx G $	$+ G_v $		
							3	1-1	i i j yi	AS .	
in gray	levels.	Howevenpute G	er, this ax and C	is not an 3y.	issue v	wher	n masks	such as	the Prev	vitt and Sobel masks	
along 1	the diag	gonal di	rection		wo ad	ditio	nal Prev	vitt and		r strongest responses masks for detecting	
0	1	1	-1	-1	0						
-1	0	1	-1	0	1						
-1	-1	0	0	1	1						
		Pre	witt								
0	1	2	-2	-1	0						
-1	0	1	-1	0	1						
- 2	-1	0	0	1	2						
		Sol									
Histogra	am of a	64X64	image	is giver	ı below	/:					[10
r_k	0	1	2	3	4	5	6	7			
n_k It is des	81 sired to	transfor	rm this	histogr	656 am to a	85 nev	•	•	ven belo	w:	
		0.20	0.30	0.20	0.15	0	0	0			
r_k	n_k		$p_r(r_p)$.)	cdf		Cdf*(L	-1)	S_k	¬	
0	81	81/4	4096=0		0.02	2	0.02*7		0		
1	122		/4096=		0.05		0.05*7		0		
2	245		/4096=		0.11		0.11*7		1		
3	329		/4096=		0.19		0.19*7		1		
4	656	656	5/4096=	0.16	0.35	<u> </u>	0.35*7	=2.45	2		
5	850	850	/4096=	-0.21	0.56)	0.56*7	=3.92	4		
6	1023	102	3/4096	5=0.25	0.81		0.81*7	=5.67	6		
7				-0.19	1		1*7=7		7		

Cdf*(L-1)

0.15*7=1.05

 S_k

 $\frac{p_r(r_k)}{0.15}$

cdf

0.15

1	0.20	0.35	0.35*7=2.45	2
2	0.30	0.65	0.65*7=4.55	5
3	0.20	0.85	0.85*7=5.95	6
4	0.15	1	1*7=7	7
5	0	1	1*7=7	7
6	0	1	1*7=7	7
7	0	1	1*7=7	7

r_k	s_k	z_k
0	0	0
1	0	0
2	1	0
3	1	0
4	2	1
5	4	2
6	6	3
7	7	4