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1  Explain image smoothing in frequency domain using ideal low pass filter, 

Butterworth low pass filter and Gaussian low pass filtering 

[10] CO3 L1,L2 

2  The following table gives the number of pixels at each of the gray levels 0 to 7 

in an image: 
r_k 0 1 2 3 4 5 6 7 

n_k 123 78 281 417 639 1054 816 688 

Draw the corresponding histogram. Perform histogram equalization and draw 

the resulting histogram 

[10] CO3 L2 

3 (a) Compute median value of the marked pixel using 3X3 mask  
20 18 33 12 120 122 

64 22 0 10 100 90 

6 3 9 11 110 0 

10 23 22 12 1 1 
 

[04] CO3 L2 

3 (b)  Explain the basic steps for filtering in frequency domain. [06] CO3 L1 

4  Explain homomorphic filters for image enhancement with necessary equations, 

block diagram and transfer function. 

 

 

 

[10] 

 

 

 

CO3 

 

 

 

L1 

5 (a) Define 2D DFT with respect to a 2D DFT of an image, and state the following 

properties 

a) Translation,  b)  Rotation, c)   Periodicity, and d)  Convolution theorem 

 

[06] CO3 L1 

5 (b) Explain Gradient filtering in images.  [04] CO3 L1 

6   Histogram of a 64X64 image is given below: 

 
r_k 0 1 2 3 4 5 6 7 

 n_k 81 122 245 329 656 850 1023 790      

 

 It is desired to transform this histogram to a new histogram given below:  

 
z_k 0 1 2 3 4 5 6 7 

 p(z_k) 0.15 0.20 0.30  0.20 0.15 0 0 0      
 

[10] CO3 L2 
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MARKS 

1  Explain image smoothing in frequency domain using ideal low pass filter, Butterworth low 

pass filter and Gaussian low pass filtering 
The edges and other sharp transitions (such as noise) in the gray levels of an image 

contribute significantly to the high-frequency content of its Fourier transform. 

Hence blurring (smoothing) is achieved in the frequency domain by attenuating high 

frequencies in the transform of a given image. 

 

G (u, v) = H (u, v) F(u, v) 

 
 

where F (u, v) is the Fourier transform of an image to be smoothed. The problem is 

to select a filter transfer function H (u, v) that yields G (u, v) by attenuating the high-

frequency components                       of F (u, v). The inverse transform then will yield the desired 

smoothed image g (x, y). 

 

Ideal Filter: 

 

A 2-D ideal lowpass filter (ILPF) is one whose transfer function satisfies the relation 
 

 

where D is a specified nonnegative quantity, and D(u, v) is the distance from point (u, 

v) to the                                              origin of the frequency plane; that is, 
 

 

 
Figure 1(a) shows a 3-D perspective plot of H (u, v)  as a function of u and v. 

The name ideal                           filter indicates that all frequencies inside a circle of radius Do 

are passed with no attenuation, whereas all frequencies outside this circle are 

completely  attenuated. 

 
 

 

Fig. 1a) Perspective plot of an ideal lowpass filter transfer function; (b) 

filter cross section. 

 

 

 

 

 

The lowpass filters are radially symmetric about the origin. For this type of filter, 

[10] 



 

specifying a cross section extending as a function of distance from the origin along 

a radial line is sufficient, as Fig. 1 (b) shows. The complete filter transfer function 

can then be generated by rotating the cross section 360 about the origin. 

Specification of radially symmetric filters centered on the N x N frequency square is 

based on the assumption that the origin of the Fourier  transform has been centered 

on the square. 

For an ideal lowpass filter cross section, the point of transition between H(u, v) = 1 

and H(u, v) = 0 is often called the cutoff frequency. In the case of Fig.1 (b), for 

example, the cutoff frequency is Do. As the cross section is rotated about the 

origin, the point Do traces a circle giving a locus of cutoff frequencies, all of 

which are a distance Do from the origin.  

Butterworth low pass filter 

The transfer function of the Butterworth lowpass (BLPF) of order n and with 

cutoff frequency                        locus at a distance Do, from the origin is defined by the relation 
 

 

 

 

A perspective plot and cross section of the BLPF function are shown in figure 2. 
 

 

Fig.2 (a) A Butterworth lowpass filter (b) radial cross section for n = 1. 

 

 

Unlike the ILPF, the BLPF transfer function does not have a sharp discontinuity that 

establishes a clear cutoff between passed and filtered frequencies. For filters with 

smooth transfer functions,          defining a cutoff frequency locus at points for which H (u, 

v) is down to a certain fraction of its maximum value is customary. In the case of 

above Eq. H (u, v) = 0.5 (down 50 percent from its maximum value of 1) when D (u, 

v) = Do. Another value commonly used is 1/√2 of the maximum value of H (u, v). 

The following simple modification yields the desired value when D (u, v) = Do: 

 

It also serves as a common base for comparing the behavior of different types of 

filters. 

The sharp cutoff frequencies of an ideal lowpass filter cannot be realized with 

electronic           components, although they can certainly be simulated in a computer. 



 

 
Gaussian Lowpass Filters: 

 

The form of these filters in two dimensions is given by 

 

 

where, D(u, v) is the distance from the origin of the Fourier transform. 
 

 

 

 

Fig.3 (a) Perspective plot of a GLPF transfer function, (b) Filter displayed as an image, 

(c) Filter radial cross sections for various values of Do. 

 

σ is a measure of the spread of the Gaussian curve. By letting σ = Du, we can express 

the filter in a more familiar form in terms of the notation: 
 

 

where Do is the cutoff frequency. When D (u, v) = Do, the filter is down to 0.607 

of its maximum value. 

 

 

 

2  The following table gives the number of pixels at each of the gray levels 0 to 7 in an image: 
r_k 0 1 2 3 4 5 6 7 

n_k 123 78 281 417 639 1054 816 688 

Draw the corresponding histogram. Perform histogram equalization and draw the resulting 

histogram 

 

Total no. of pixels: sum of all 𝑛𝑘=∑ 𝑛𝑘
7
𝑘=0 =(123+78+281+417+639+1054+816+688)= 

4096 

 

Normalized histogram 
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𝑟𝑘 𝑛𝑘 𝑝𝑟(𝑟𝑘) cdf Cdf*(L-1) 𝑠𝑘 

0 123 123/4096=0.03 0.03 0.03*7=0.21 0 

1 78 78/4096=0.02 0.05 0.05*7=0.35 0 

2 281 281/4096=0.07 0.12 0.12*7=0.84 1 

3 417 417/4096=0.10 0.22 0.22*7=1.54 2 

4 639 639/4096=0.16 0.38 0.38*7=2.66 3 

5 1054 1054/4096=0.26 0.64 0.64*7=4.48 4 

6 816 816/4096=0.20 0.84 0.84*7=5.88 6 

7 688 688/4096=0.17 1 1*7=7 7 

 

 

𝑠𝑘 𝑝𝑠(𝑠𝑘) 
0 0.03+0.02=0.05 

1 0.07 

2 0.10 

3 0.16 

4 0.26 

5 0 

6 0.20 

7 0.17 

 

Resulting histogram: 

 
 

 

3 (a) Compute median value of the marked pixel using 3X3 mask  
20 18 33 12 120 122 

64 22 0 10 100 90 

6 3 9 11 110 0 

[04] 
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10 23 22 12 1 1 

   

Using a 3X3 mask for pixel (2,2): 
20 18 33 12 120 122 

64 22 0 10 100 90 

6 3 9 11 110 0 

10 23 22 12 1 1 

 Ordering the pixel values in increasing order: 

[0 

3  

6  

9 

18 

20 

22 

33 

64] 

Where 18 is the median value  

 

 

Using a 3X3 mask for pixel (4,2): 

 
20 18 33 12 120 122 

64 22 0 10 100 90 

6 3 9 11 110 0 

10 23 22 12 1 1 

 

Ordering the pixel values in increasing order: 

[0 

9 

10 

11 

12 

33 

100 

110 

120] 

Where 12 is the median value  

 

Using a 3X3 mask for pixel (5,2): 
20 18 33 12 120 122 

64 22 0 10 100 90 

6 3 9 11 110 0 

10 23 22 12 1 1 

 Ordering the pixel values in increasing order: 

[0 

10 

11 

12 

90 

100 

110 

120 

122] 



 

Where 90 is the median value  

 

Using a 3X3 mask for pixel (3,3): 
20 18 33 12 120 122 

64 22 0 10 100 90 

6 3 9 11 110 0 

10 23 22 12 1 1 

Ordering the pixel values in increasing order: 

[0 

3 

9 

10 

11 

12 

22 

22 

23] 

Where 11 is the median value 

 

3 (b)  Explain the basic steps for filtering in frequency domain. 

1. Given an input image 𝑓(𝑥, 𝑦) of size MXN, obtain the padding parameters P and Q 

using the following equations: 

               𝑃 ≥ 𝑀 + 𝐶 − 1 𝑎𝑛𝑑    𝑄 ≥ 𝑁 + 𝐷 − 1 

where the mask used for filtering is of the size CXD. 

Typically, we select P=2Mand Q=2N. 

2. Form a padded image 𝑓𝑝(𝑥, 𝑦) of size PXQ by appending the necessary number of zeros 

to 𝑓(𝑥, 𝑦)  
3. Multiply 𝑓𝑝(𝑥, 𝑦)  by (−1)𝑥+𝑦 to center its transform. 

4. Compute the DFT, F(u,v), of the image from step 3. 

5. Generate a real, symmetric filter function H(u,v) of size PXQ with senter at co-ordinates 

(P/2,Q/2). Form the product: 

                                              G(u,v)=F(u,v)H(u,v) 

Using array multiplication, i.e. G(i,k)=F(i,k)H(i,k) 

6. Obtain the processed image: 

𝑔𝑝(𝑥, 𝑦) = {𝑟𝑒𝑎𝑙[ℑ−1[𝐺(𝑢, 𝑣)]]}(−1)𝑥+𝑦  

Where the real part is selected in order to ignore parasitic complex components resulting 

from the computational inaccuracies and the subscript p indicates that we are dealing with 

padded arrays. 

7. Obtain the final processes result 𝑔(𝑥, 𝑦), by extracting the MXN region from the top, 

left quadrant of 𝑔𝑝(𝑥, 𝑦) 

[06] 

4  Explain homomorphic filters for image enhancement with necessary equations, block 

diagram and transfer function. 

An image f(x,y) can be expressed as the product of its illumination i(x,y) and reflectance 

r(x,y), components: 

𝑓(𝑥, 𝑦) = 𝑖(𝑥, 𝑦)𝑟(𝑥, 𝑦) 
This equation cannot be used directly to operate on the frequency components of 

illumination and reflectance because the Fourier transform of a product is not the product 

of the transforms: 

ℑ[𝑓(𝑥, 𝑦)] ≠ ℑ[𝑖(𝑥, 𝑦)]ℑ[𝑟(𝑥, 𝑦)] 
However, we can define: 

𝑧(𝑥, 𝑦) = ln(𝑓(𝑥, 𝑦)) = ln(𝑖(𝑥, 𝑦)) + ln(𝑟(𝑥, 𝑦)) 

Then,                                          ℑ[𝑧(𝑥, 𝑦)] = ℑ[ln(𝑓(𝑥, 𝑦))] 
                                             = ℑ[ln{𝑖(𝑥, 𝑦)}] + ℑ[ln{𝑟(𝑥, 𝑦)}] 
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Or  

𝑍(𝑢, 𝑣) = 𝐹𝑖(𝑢, 𝑣) + 𝐹𝑟(𝑢, 𝑣) 
Where 𝐹𝑖(𝑢, 𝑣) and 𝐹𝑟(𝑢, 𝑣) are the Fourier transform of ln{𝑖(𝑥, 𝑦)} 𝑎𝑛𝑑 ln{𝑟(𝑥, 𝑦)}, 
respectively.  

We can filter Z(u,v) using a filter H(u,v), such that: 

𝑆(𝑢, 𝑣) = 𝐻(𝑢, 𝑣)𝑍9𝑢, 𝑣) = 𝐻(𝑢, 𝑣)𝐹𝑖(𝑢, 𝑣) + 𝐻(𝑢, 𝑣)𝐹𝑟(𝑢, 𝑣) 
The filtered image in the spatial domain is  

𝑠(𝑥, 𝑦) = ℑ−1{𝑆(𝑢, 𝑣)}                = ℑ−1{𝐻(𝑢, 𝑣)𝐹𝑖(𝑢, 𝑣) + 𝐻(𝑢, 𝑣)𝐹𝑟(𝑢, 𝑣)} 
 

By defining 

𝑖′(𝑥, 𝑦) = ℑ−1{𝐻(𝑢, 𝑣)𝐹𝑖(𝑢, 𝑣)} , and 

𝑟′(𝑥, 𝑦) = ℑ−1{𝐻(𝑢, 𝑣)𝐹𝑟(𝑢, 𝑣)} ,  
Therefore 

𝑠(𝑥, 𝑦) = 𝑖′(𝑥, 𝑦) + 𝑟′(𝑥, 𝑦) 
Finally because z(x,y) was formed by taking natural logarithm of the input image, we 

reverse the process by taking the exponential of the filtered result to form the output image: 

𝑔(𝑥, 𝑦) = 𝑒𝑠(𝑥,𝑦)

= 𝑒𝑖
′(𝑥,𝑦)𝑒𝑟

′(𝑥,𝑦)

= 𝑖0(𝑥, 𝑦)𝑟0(𝑥, 𝑦)

 

Where, 

𝑖0(𝑥, 𝑦) = 𝑒𝑖
′(𝑥,𝑦) 𝑎𝑛𝑑 𝑟0(𝑥, 𝑦) = 𝑒𝑟

′(𝑥,𝑦) 

Are the illumination and reflectance components of the output (processed) image. 

 

 

 

 

 

 

The filter H(u,v) is called the homomorphic filter. The key approach is the separation of the 

illumination and reflectance components. The illumination component of an image 

generally is characterized by the slow spatial variation 

While the reflectance component tends to vary abruptly particularly at the junctions of 

dissimilar objects. These characteristics lead to associating the low frequencies of the 

Fourier transform of the logarithmic of an image with illumination and high frequencies 

with reflectance. Better control can be gained over the illumination and reflectance 

components with a homomorphic filter. This control requires specification of a filter 

function H(u,v) that affects the low- and high- frequency components of the Fourier 

transform in different, controllable ways 

 

5 (a) Define 2D DFT with respect to a 2D DFT of an image, and state the following properties 

b) Translation,  b)  Rotation, c)   Periodicity, and d)  Convolution theorem 

 

For an 𝑀 ×𝑁 2D image f(x,y), 2D DFT is defined as follows:  

𝐹(𝑢, 𝑣) = ∑ ∑𝑓(𝑥, 𝑦)𝑒−𝑗2𝜋(
𝑢𝑥
𝑀
+
𝑣𝑦
𝑁
)

𝑁−1

𝑦=0

𝑀−1

𝑥=0

,     

Where u=0,1,2,…,M-1, and v=0,1,2,….,N-1 

Inverse 2D-DFT : 

𝑓(𝑥, 𝑦) =
1

𝑀𝑁
∑ ∑𝐹(𝑢, 𝑣)𝑒𝑗2𝜋(

𝑢𝑥
𝑀
+
𝑣𝑦
𝑁
)

𝑁−1

𝑣=0

𝑀−1

𝑢=0

 

[06] 

ln DFT 
H(u,

v) 
IDFT exp 𝑔(𝑥, 𝑦) 𝑓(𝑥, 𝑦) 



 

 

a) Translation in frequency domain: 

FT{ 𝑓(𝑥, 𝑦)𝑒𝑗2𝜋(
𝑢0𝑥

𝑀
+
𝑣0𝑦

𝑁
)
} = 𝐹(𝑢 − 𝑢0, 𝑣 − 𝑣0) 

 

Translation in time domain: 

FT{f(x − 𝑥0, 𝑦 − 𝑦0)}=𝐹(𝑢, 𝑣)𝑒−𝑗2𝜋(
𝑢𝑥0
𝑀

+
𝑦0𝑣

𝑁
)
 

 

b) Rotation: 

FT{𝑓(𝑟, Θ + Θ0)}=𝐹(𝜔,Φ + Θ0) 
 

Where, 𝑥 = 𝑟𝑐𝑜𝑠Θ,  𝑦 = 𝑟𝑠𝑖𝑛Θ, 𝑢 = 𝜔𝑐𝑜𝑠 Φ,  𝑣 = 𝜔𝑠𝑖𝑛 Φ  
 

c) Periodicity: 

         𝑓(𝑥, 𝑦) = 𝑓(𝑥 + 𝑘1𝑀, 𝑦) = 𝑓(𝑥, 𝑦 + 𝑘2𝑁) = 𝑓(𝑥 + 𝑘1𝑀, 𝑦 + 𝑘2𝑁) 

  

F(𝑢, 𝑣) = 𝐹(𝑢 + 𝑘1𝑀, 𝑣) = 𝐹(𝑢, 𝑣 + 𝑘2𝑁) = 𝐹(𝑢 + 𝑘1𝑀, 𝑣 + 𝑘2𝑁) 

 

d) Convolution Theorem 

FT{𝑓(𝑥, 𝑦) ∗ ℎ(𝑥, 𝑦)}=𝐹(𝑢, 𝑣)𝐻(𝑢, 𝑣) 
 

5 (b) Explain Gradient filtering in images.  

First-order derivatives of a digital image are based on various approximations of 

the 2-D gradient. The gradient of an image f (x, y) at location (x, y) is defined as 

the vector 
 

It is well known from vector analysis that the gradient vector points in the direction of 

maximum rate of change of f at coordinates (x, y). An important quantity in edge detection 

is the magnitude 

of this vector, denoted by Af, where 
 

 

This quantity gives the maximum rate of increase of f (x, y) per unit distance in the direction 
of Af. It is a common (although not strictly correct) practice to refer to Af also as the gradient. 
The direction of the gradient vector also is an important quantity. Let α (x, y) represent the 
direction angle of the vector Af at (x, y). Then, from vector analysis, 

 

where the angle is measured with respect to the x-axis. The direction of an edge at (x, y) is 

perpendicular to the direction of the gradient vector at that point. Computation of the gradient 

of 

[04] 



 

an image is based on obtaining the partial derivatives &f/&x and &f/&y at every pixel 

location. Let the 3x3 area shown in Fig. 1.1 (a) represent the gray levels in a neighborhood of 

an image. One of the simplest ways to implement a first-order partial derivative at point z5 is 

to use the 

following Roberts cross-gradient operators: 
 

These derivatives can be implemented for an entire image by using the masks shown in Fig. 

1.1(b). Masks of size 2 X 2 are awkward to implement because they do not have a clear 

center. An approach using masks of size 3 X 3 is given by 

 



 

  
 

 

 

 

A weight value of 2 is used to achieve some smoothing by giving more importance to the 

center point. Figures 1.1(f) and (g), called the Sobel operators, and are used to implement these 

two equations. The Prewitt and Sobel operators are among the most used in practice for 

computing digital gradients. The Prewitt masks are simpler to implement than the Sobel 

masks, but the latter have slightly superior noise-suppression characteristics, an important 

issue when dealing with derivatives. Note that the coefficients in all the masks shown in Fig. 

1.1 sum to 0, indicating that they give a response of 0 in areas of constant gray level, as 

expected of a derivative operator. 

The masks just discussed are used to obtain the gradient components Gx and Gy. Computation 

of the gradient requires that these two components be combined. However, this 

implementation is not always desirable because of the computational burden required by 

squares and square roots. An approach used frequently is to approximate the gradient by 



 

absolute values: 
 

This equation is much more attractive computationally, and it still preserves relative changes 

in gray levels. However, this is not an issue when masks such as the Prewitt and Sobel masks 

are used to compute Gx and Gy. 

It is possible to modify the 3 X 3 masks in Fig. 1.1 so that they have their strongest responses 

along the diagonal directions. The two additional Prewitt and Sobel masks for detecting 

discontinuities in the diagonal directions are shown in Fig. 1.2. 

 
6   Histogram of a 64X64 image is given below: 

 
r_k 0 1 2 3 4 5 6 7 

 n_k 81 122 245 329 656 850 1023 790      

 

 It is desired to transform this histogram to a new histogram given below:  

 
z_k 0 1 2 3 4 5 6 7 

  p(z_k)  0.15 0.20 0.30  0.20 0.15 0 0 0      

  

𝑟𝑘 𝑛𝑘 𝑝𝑟(𝑟𝑘) cdf Cdf*(L-1) 𝑠𝑘 

0 81 81/4096=0.02 0.02 0.02*7=0.14 0 

1 122 122/4096=0.03 0.05 0.05*7=0.35 0 

2 245 245/4096=0.06 0.11 0.11*7=0.77 1 

3 329 329/4096=0.08 0.19 0.19*7=1.33 1 

4 656 656/4096=0.16 0.35 0.35*7=2.45 2 

5 850 850/4096=0.21 0.56 0.56*7=3.92 4 

6 1023 1023/4096=0.25 0.81 0.81*7=5.67 6 

7 790 790/4096=0.19 1 1*7=7 7              

 

 

 

𝑧𝑘 𝑝𝑟(𝑟𝑘) cdf Cdf*(L-1) 𝑠𝑘 

0 0.15 0.15 0.15*7=1.05 1 
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1 0.20 0.35 0.35*7=2.45 2 

2 0.30 0.65 0.65*7=4.55 5 

3 0.20 0.85 0.85*7=5.95 6 

4 0.15 1 1*7=7 7 

5 0 1 1*7=7 7 

6 0 1 1*7=7 7 

7 0 1 1*7=7 7 

  

 

𝑟𝑘 𝑠𝑘 𝑧𝑘 

0 0 0 

1 0 0 

2 1 0 

3 1 0 

4 2 1 

5 4 2 

6 6 3 

7 7 4 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


