

INTERNAL ASSESSMENT TEST – II

Sub	DIGITAL SIGNAL	PROCESSIN	ſG					Code	18EC52
Date	16/12/2021	Duration	90 mins	Max Marks	50	Sem	V	Branch	ECE

Answer any 5 full questions

	Answer any 5 run questions	Marks	со	RBT
1	State and prove the following properties of DFT i) Circular time shift property ii) Circular frequency shift property iii) Circular time reversal property	[10]	CO2	L3
2	Compute the circular convolution of $x[n] = [2, -1, 4, -2]$ and $h[n] = [4, -1, -3, 2]$ using DFT-IDFT method. Verify the result using matrix method.	[10]	CO2	L3
3	Find the output of an LTI system whose impulse response is $h[n] = [2,2,1]$ for the input $x[n] = [3,0,-2,0,2,1,0,-2,-1]$ using overlap-save method. Use 7-point circular convolution.	F - 1	CO1	L3

Page 1 of 2

USN					

INTERNAL ASSESSMENT TEST – II

Sub	DIGITAL SIGNAL	PROCESSIN	I G					Code	18EC52
Date	16/12/ 2021	Duration	90 mins	Max Marks	50	Sem	V	Branch	ECE

	Answer any 5 full questions	1		1
		Marks	СО	RBT
1	State and prove the following properties of DFT i) Circular time shift property ii) Circular frequency shift property iii) Circular time reversal property	[10]	CO2	L3
2	Compute the circular convolution of $x[n] = [2, -1, 4, -2]$ and $h[n] = [4, -1, -3, 2]$ using DFT-IDFT method. Verify the result using matrix method.	[10]	CO2	L3
3	Find the output of an LTI system whose impulse response is $h[n] = [2,2,1]$ for the input $x[n] = [3,0,-2,0,2,1,0,-2,-1]$ using overlap-save method. Use 7-point circular convolution.		CO1	L3

		Marks	со	RBT
4	Derive radix-2 DIT-FFT for $N = 8$. Draw the complete signal flow graph.	[10]	CO3	L3
5	Compute the DFT of $x[n] = \cos\left(\frac{\pi n}{4}\right)$, $0 \le n \le 7$ using DIF-FFT.	[10]	CO3	L3
6	Find the IDFT of the following sequence using DIF-IFFT.	[10]	CO3	L3
	X[k] = [20, -5.828 - j2.414, 0, -0.172 - j0.414, 0, -0.172 + j0.414, 0, -5.828 + j2.414]			
7	Find the circular convolution of $x[n] = [4,2,0,3]$ and $h[n] = [3,1,5,2]$ using DIT-FFT algorithms.	[10]	CO3	L3

Page 2 of 2

		Marks	СО	RBT
4	Derive radix-2 DIT-FFT for $N = 8$. Draw the complete signal flow graph.	[10]	CO3	L3
5	Compute the DFT of $x[n] = \cos\left(\frac{\pi n}{4}\right)$, $0 \le n \le 7$ using DIF-FFT.	[10]	CO3	L3
6	Find the IDFT of the following sequence using DIF-IFFT.	[10]	CO3	L3
	X[k] = [20, -5.828 - j2.414, 0, -0.172 - j0.414, 0, -0.172 + j0.414, 0, -5.828 + j2.414]			
7	Find the circular convolution of $x[n] = [4,2,0,3]$ and $h[n] = [3,1,5,2]$ using DIT-FFT algorithms.	[10]	CO3	L3

Scheme Of Evaluation Internal Assessment Test II – Dec 2021

Sub:	DIGITAL SIGNA	AL PROCES	SING					Code:	18EC52
Date:	16/12/2021	Duration:	90 mins	Max Marks:	50	Sem:	V	Branch:	ECE

Note: Answer 5 Questions

	Description	Ma	rks	Max
		Distril	oution	Marks
1	State and prove the following properties of DFT		10	10
	i) Circular time shift property			
	ii) Circular frequency shift property			
	iii) Circular time reversal property			
	Circular time shift property	4		
	Circular frequency shift property	3		
	Circular time reversal property	3		
2	Compute the circular convolution of $x[n]=[2,-1,4,-2]$ and $h[n]=[4,-1,-3,2]$ using		10	10
	DFT-IDFT method. Verify the result using matrix method.			
	• Finding $X(k)$	3	=	
	• Finding $H(k)$	3		
	• Finding $Y(k) = X(k)H(k)$	1		
	• Finding $y(n)$	3		
3	Find the output of an LTI system whose impulse response is h[n]=[2,2,1] for the		10	10
	input $x[n]=[3,0,-2,0,2,1,0,-2,-1]$ using overlap-save method. Use 7-point circular			
	convolution.			
	Making smaller blocks	2		
	Finding output of each block	6		
	Finding final output	2		
4	Derive radix-2 DIT-FFT for N=8. Draw the complete signal flow graph.		10	10
	First stage of decimation	4		
	Second stage of decimation	4		
	Third stage of decimation	2		
5	Compute the DFT of $x[n] = cos(\frac{\pi n}{4}), 0 \le n \le 7$ using DIF-FFT.		10	10
	First stage output	2		
	Second stage output	4		

	Third stage output	4		
6	Find the IDFT of the following sequence using DIF-IFFT.		10	10
	X[k]=[20,-5.828-j2.414,0,-0.172-j0.414,0,-0.172+j0.414,0,-5.828+j2.414]			
	First stage output	2		
	Second stage output	4		
	Third stage output	4		
7	Find the circular convolution of $x[n]=[4,2,0,3]$ and $h[n]=[3,1,5,2]$ using DIT-FFT		10	10
	algorithms.			
	• Finding $X(k)$	3		
	• Finding $H(k)$	3		
	• Finding $Y(k) = X(k)H(k)$	1		
	• Finding $y(n)$	3		

CMR INSTITUTE OF TECHNOLOGY DEPT OF ECE DIGITAL SIGNAL PROCESSING INTERNAL ASSESSMENT TEST – 2 16.12.2021

SOLUTIONS

Q.No.	Question	Marks
1	State and prove the following properties of DFT	10
	i) Circular time shift property	
	ii) Circular frequency shift property	
	iii) Circular time reversal property	
	If $\chi(n) \leftarrow \frac{DFT}{N} \times (k)$	
	then, $\chi[(n-1)_N] \leftarrow DFT \rightarrow e^{j2T_1 k} \times (k)$	
	Proof:	ſ
	N-1 -	<u> </u>
	We know that, DFT of $\chi(n) = \sum_{n=0}^{N-1} \chi(n) e^{-\frac{1}{2}}$	
	$\therefore DFT \text{ of } \chi[(n-l)_N]$ $= \sum_{i=1}^{N-l} \chi[(n-l)_N] e^{-\frac{2\pi i}{N}kn}$	
	D=0	
	$= \sum_{n=0}^{N-1} \chi(n-l+pN) e^{-j\frac{2\pi}{N}kn}$	
	where p is an ir)

Let
$$n-l+pN=m$$
.

 $\therefore n=m+l-pN$

when $n=0$, $m=-l+pN$

when $n=N-1$, $m=-l+pN+N-1$
 $\therefore (1)$ can be written as,

DFT of $\chi\left[0-l\right]_{N}$

$$=\frac{l+pN+N-1}{\chi\left(m\right)}e^{-\frac{j2\pi}{N}\kappa\left(m+l-pN\right)}$$

$$=\frac{1}{N}\chi\left(m\right)e^{-\frac{j2\pi}{N}\kappa l}\sum_{n=0}^{2\pi}\chi\left(n\right)e^{-\frac{j2\pi}{N}\kappa l}$$

$$=\frac{1}{N}\chi\left(n\right)e^{-\frac{j2\pi}{N}\kappa l}$$

$$=\frac{1}{N}\chi\left(n\right)e^{-\frac{j2\pi}{N}\kappa l}$$

$$=\frac{1}{N}\chi\left(n\right)e^{-\frac{j2\pi}{N}\kappa l}$$

$$=\frac{1}{N}\chi\left(n\right)e^{-\frac{j2\pi}{N}\kappa l}$$
Then $j^{2\pi}l^{-1}$ $\chi\left(n\right)$

$$=\frac{1}{N}\chi\left(n\right)$$

Then $j^{2\pi}l^{-1}$ $\chi\left(n\right)$

$$=\frac{1}{N}\chi\left(n\right)$$

Proof:

We know that, $DFT of x(n) = \sum_{n=0}^{\infty} x(n)e^{n}, o \in \mathbb{N}$ $\sum_{n=0}^{\infty} x(n) = \sum_{n=0}^{\infty} x(n)e^{n}, o \in \mathbb{N}$ $= \sum_{n=0}^{\infty} x(n)e^{n}$ $= \sum_{n=0}^{\infty} x(n)e^{n}$

If $\chi(n) \stackrel{\text{DFT}}{\leftarrow} \chi(k)$ then $\chi(\epsilon n)_N) \stackrel{\text{DFT}}{\leftarrow} \chi(\epsilon k)_N$ Proof: Ne know that, $\chi(\epsilon k)_N = \frac{1}{N} \chi(\epsilon k)_N$ $\chi(\epsilon k)_N = \frac{1}{N} \chi(\epsilon k)_N$ $\chi(\epsilon k)_N = \frac{1}{N} \chi(\epsilon k)_N$

	Let $-n = m$ ce, $n = -m$	
	when $n=0$, $m=0$	
	when $n=0$, $m=0$ when $n=N-1$, $m=-(N-1)$	
	: (1) can be written as, $-(N-1) - j = \sum_{m=0}^{2T} \kappa(-1) = \sum_{m=0}^{\infty} \chi(m) e^{-1}$	1
	$N-1$ $-\frac{1}{2}$ $\frac{2}{N}$ $(-k)$ M	
	$= \leq \chi(m) \in M=0$	
	$= \times (C-K)_N$	
2	Compute the circular convolution of $x[n]=[2,-1,4,-2]$ and $h[n]=[4,-1,-3,2]$ using DFT-IDFT method. Verify the result using matrix method.	10
	$X_1(k) = [3, -2 - j, 9, -2 + j]$	
	$X_2[k] = [2, 7+3j, 0, 7-3j]$	
	$Y[k] = X_1(k)X_2(k) = [6, -11 - 13j, 0, -11 + 13j]$	
	y[n] = [-4, 8, 7, -5]	
3	Find the output of an LTI system whose impulse response is $h[n]=[2,2,1]$ for the input $x[n]=[3,0,-2,0,2,1,0,-2,-1]$ using overlap-save method. Use 7-point circular convolution.	10
	$y_1(n) = (4, 2, 6, 6, -1, -4, 2)$	
	$y_2(n) = (-1, 4, 6, 4, -3, -6, -4)$	
	$y_3(n) = (-2, -2, -1, 0, 0, 0, 0, 0)$	
	y(n) = (6, 6, -1, -4, 2, 6, 4, -3, -6, -4, -1)	

N-point DFT of $x(n)$ is given by (1) $x(k) = \sum_{n=0}^{\infty} x(n)W_{N}$ (1) $0 \le k \le N-1$ where $W_{N} = e$ The N-point DFT given by (1) can be split into two $\frac{N}{2}$ -point DFTs corresponding to even indexed and odd indexed samples of $x(n)$, as follows: $x(k) = \sum_{n=0}^{\infty} x(n)W_{N}^{kn} + \sum_{n=0}^{\infty} x(n)W_{N}^{kn}$ $x(k) = \sum_{n=0}^{\infty} x(n)W_{N}^{kn} + \sum_{n=0}^{\infty} x(n)W_{N}^{$	4	Derive radix-2 DIT-FFT for $N=8$. Draw the complete signal flow graph.	10
$= \sum_{n=0}^{N-1} \chi(2n) W_{N} + \sum_{n=0}^{N-1} \chi(2n+1) W_{N}$ $= \sum_{n=0}^{N-1} \chi(2n) W_{N} + \sum_{n=0}^{N-1} \chi(2n+1) W_{N} W_{N}$ $= \sum_{n=0}^{N-1} \chi(2n) W_{N} + \sum_{n=0}^{N-1} \chi(2n+1) W_{N} W_{N}$ $= \sum_{n=0}^{N-1} \chi(2n) W_{N} + W_{N} \times \sum_{n=0}^{N-1} \chi(2n+1) W_{N}$ $= \sum_{n=0}^{N-1} \chi(2n) W_{N} + W_{N} \times \sum_{n=0}^{N-1} \chi(2n+1) W_{N}$ $= \sum_{n=0}^{N-1} \chi(2n) W_{N} + W_{N} \times \sum_{n=0}^{N-1} \chi(2n+1) W_{N}$ $= \sum_{n=0}^{N-1} \chi(2n) W_{N} + W_{N} \times \sum_{n=0}^{N-1} \chi(2n+1) W_{N}$ $= \sum_{n=0}^{N-1} \chi(2n) W_{N} + W_{N} \times \sum_{n=0}^{N-1} \chi(2n+1) W_{N} \times \sum_{n=0}^{N-1$		N-point DFT of $x(n)$ is given by $x(k) = \sum_{n=0}^{N-1} x(n)W_{N}$ (1) $x(k) = \sum_{n=0}^{N-1} x(n)W_{N}$ (1) where $w_{N} = e^{-\frac{1}{2N}}$ The N-point DFT given by (1) can be split into two $\frac{N}{2}$ -point DFTs corresponding to even indexed and odd indexed samples of $x(n)$, as follows: $x(k) = \sum_{n=0}^{N-1} x(n)W_{N}$ $+ \sum_{n=0}^{N-1} x(n)W_{N}$	
5 Compute the DFT of $x[n] = cos(\frac{\pi n}{4}), 0 \le n \le 7$ using DIF-FFT. 10		$ \frac{\frac{N_{2}-1}{2}}{2} = \frac{2kn}{2} \frac{\frac{N_{2}-1}{2}}{2kn} + \frac{(2n+1)}{2} \frac{(2n+1)W_{N}}{2} = \frac{\frac{N_{2}-1}{2}}{2kn} \frac{2kn}{kn} + \frac{\frac{N_{2}-1}{2}}{2kn} \frac{2kn}{kn} \frac{k}{kn} + \frac{\frac{N_{2}-1}{2}}{n=0} \frac{2kn}{kn} \frac{k}{kn} + \frac{\frac{N_{2}-1}{2}}{n=0} \frac{kn}{2} + \frac{\frac{N_{2}-1}{2}}{n=0} \frac{kn}{n=0} + \frac{\frac{N_{2}-1}{2}}{n=0} \frac{kn}{n=0} + \frac{k}{2} \frac{N_{2}-1}{n=0} \frac{kn}{n=0} + \frac{N_{2}-1}{n=0} + \frac{N_{2}-1}{n=0}$	
,	5	Compute the DFT of $x[n] = cos(\frac{\pi n}{4}), 0 \le n \le 7$ using DIF-FFT.	10

