

 USN

Internal Assessment Test III – Jan. 2022

Sub: Cryptography Sub Code: 18EC744 Branch: EC

Date: 27/01/2022 Duration: 90 min’s Max Marks: 50 Sem / Sec: 7 A, B, C, D OBE

Answer any FIVE FULL Questions MARKS CO RBT

1 Consider a Diffie Hellman scheme with a common prime 𝑞 = 19 and primitive

root 𝛼 = 2

a) Show that 2 is a primitive root of 19.

b) If user 𝐴 has public key 𝑌𝐴 = 13, what is 𝐴′𝑠 private key 𝑋𝐴?

c) If user 𝐵 has public key 𝑌𝐵 = 15, what is 𝐵′𝑠 private key 𝑋𝐵?

d) Find the secret key 𝐾𝐴 𝑎𝑛𝑑 𝐾𝐵.

[10] CO4 L3

2 Write the Diffie-Hellman key exchange algorithm and explain the Man-in-
middle attack on Diffie-Hellman algorithm.

[10] CO4 L2

3 Consider the elliptic curve defined over 𝐸23(1,1). Let 𝑃 = (3,13) and 𝑄 =
(9,16). Find (𝑃 + 𝑄) and 2𝑃.

[10] CO4 L4

4 Write a short note on Linear feedback shift register (LFSRs). Explain the

working of a 4-bit LFSR and show the output sequence if the seed state is

1111, justify it as the maximal length code.

[10] CO5 L2

5 List out different types of LFSR-based Keystream generator. Discuss Geffe

Generator and generalized gaffe generator in detail with necessary diagram.
[10] CO5 L1

6 Write a short note on the following:
a) A5

b) HUGHES XPD/KPD
[10] CO5 L1

7 Write a short note on
a) Algorithm M and write the C code for it.

b) PKZIP

[10] CO5 L2

----------All The Best---------

1

CMR
INSTITUTE OF
TECHNOLOGY

 USN

Scheme and Solution of Internal Assesment Test – III

Sub: Cryptography Sec 7 A, B, C, D Code: 18EC744

Date: 27/01/2022 Duration: 90 mins Max Marks: 50 Sem: VII Branch: ECE

Solution

1 Consider a Diffie Hellman scheme with a common prime 𝑞 = 19 and primitive root 𝛼 = 2

a) Show that 2 is a primitive root of 19.

b) If user 𝐴 has public key 𝑌𝐴 = 13, what is 𝐴′𝑠 private key 𝑋𝐴?

c) If user 𝐵 has public key 𝑌𝐵 = 15, what is 𝐵′𝑠 private key 𝑋𝐵?

d) Find the secret key 𝐾𝐴 𝑎𝑛𝑑 𝐾𝐵

[10 marks]

Ans 𝑞 = 19 𝑎𝑛𝑑 𝛼 = 2
𝛼 = 2 is the primitive root of 19

21 𝑚𝑜𝑑 19 = 2
22 𝑚𝑜𝑑 19 = 4
23 𝑚𝑜𝑑 19 = 8
24 𝑚𝑜𝑑 19 = 16
25 𝑚𝑜𝑑 19 = 13
26 𝑚𝑜𝑑 19 = 7
27 𝑚𝑜𝑑 19 = 14
28 𝑚𝑜𝑑 19 = 9
29 𝑚𝑜𝑑 19 = 18
210 𝑚𝑜𝑑 19 = 17

211 𝑚𝑜𝑑 19 = 15
212 𝑚𝑜𝑑 19 = 11
213 𝑚𝑜𝑑 19 = 3
214 𝑚𝑜𝑑 19 = 6
215 𝑚𝑜𝑑 19 = 12
216 𝑚𝑜𝑑 19 = 5
217 𝑚𝑜𝑑 19 = 10
218 𝑚𝑜𝑑 19 = 1

𝑌𝐴 = 𝛼𝑋𝐴 𝑚𝑜𝑑 𝑞 => 13 = 2𝑋𝐴 𝑚𝑜𝑑 19 => 𝑋𝐴 = 5
𝑌𝐵 = 𝛼𝑋𝐵 𝑚𝑜𝑑 𝑞 => 15 = 2𝑋𝐵 𝑚𝑜𝑑 19 => 𝑋𝐵 = 11

𝐾𝐴 = 𝑌𝐵
𝑋𝐴 𝑚𝑜𝑑 𝑞 => 𝐾𝐴 = 155 𝑚𝑜𝑑 19 = 759375 𝑚𝑜𝑑 19 = 2

𝐾𝐵 = 𝑌𝐴
𝑋𝐵 𝑚𝑜𝑑 𝑞 => 𝐾𝐵 = 1311 𝑚𝑜𝑑 19 = 2

1311 𝑚𝑜𝑑 19
(11)10 = (1011)2
1: 13 𝑚𝑜𝑑 19 = 13
0: (13)2 𝑚𝑜𝑑 353 = 17
1: (17)2 × 13 𝑚𝑜𝑑 353 = 14
1: (14)2 × 13 𝑚𝑜𝑑 353 = 2

𝐾𝐴 = 𝐾𝐵 = 2

[2 marks]

+

[8 marks]

2 Write the Diffie-Hellman key exchange algorithm and explain the Man-in-middle attack on
Diffie-Hellman algorithm.

[10 marks]

Ans In this scheme, there are two publicly known numbers those are: a prime number q and an integer 𝛼
that is a primitive root of q.
User 𝐴 selects a random integer 𝑋𝐴 < 𝑞 and compute 𝑌𝐴 = 𝛼𝑋𝐴 𝑚𝑜𝑑 𝑞.
User 𝐵 selects a random integer 𝑋𝐵 < 𝑞 and compute 𝑌𝐵 = 𝛼𝑋𝐵 𝑚𝑜𝑑 𝑞.

User A computes the key as 𝐾𝐴 = 𝑌𝐵
𝑋𝐴 𝑚𝑜𝑑 𝑞

User B computes the key as 𝐾𝐵 = 𝑌𝐴
𝑋𝐵 𝑚𝑜𝑑 𝑞

[5 marks]

2

MAN-IN-MIDDLE ATTACK:

a) Diffie Hellman Algorithm is insecure against man in middle attack.
b) The attack proceeds as follows:

[5 marks]

3

(1) Darth prepare for the attack by generating 2 random key 𝑋𝐷1
 𝑎𝑛𝑑 𝑋𝐷2

 and computes

its corresponding private key 𝑌𝐷1
𝑎𝑛𝑑 𝑌𝐷2

.

(2) Alice sends 𝑌𝐴 to Bob.
(3) Darth intercepts 𝑌𝐴 and transmits 𝑌𝐷1

. Darth also calculate the 𝐾2 = (𝑌𝐴)𝑋𝐷2 𝑚𝑜𝑑 𝑞

(4) Bob receives 𝑌𝐷1
 and calculate 𝐾1 = (𝑌𝐷1

)
𝑋𝐵

 𝑚𝑜𝑑 𝑞

(5) Bob transmits the 𝑌𝐵 to Alice.
(6) Darth intercepts 𝑌𝐵 and transmits 𝑌𝐷2

to Alice and Darth calculate 𝐾1 =

(𝑌𝐵)𝑋𝐷1 𝑚𝑜𝑑 𝑞

(7) Alice receives 𝑌𝐷2
 and calculate 𝐾2 = (𝑌𝐷2

)
𝑋𝐴

 𝑚𝑜𝑑 𝑞

At this point, Bob and Alice think that they share a secret key, but instead Bob and Darth shared
secret key 𝐾1and Alice and Darth shared the secret key 𝐾2. All the future communication between
Bob and Alice is compromised.

3 Consider the elliptic curve defined over 𝐸23(1,1). Let 𝑃 = (3,13) and 𝑄 = (9,16). Find
(𝑃 + 𝑄) and 2𝑃.

[10 marks]

Ans
∆= (

𝑦𝑄 − 𝑦𝑝

𝑥𝑄 − 𝑥𝑃

) 𝑚𝑜𝑑 𝑝 => ∆= (
16 − 13

9 − 3
) 𝑚𝑜𝑑 23 = (

3

6
) 𝑚𝑜𝑑 23 = (

1

2
) 𝑚𝑜𝑑 23 = 2−1𝑚𝑜𝑑23

= −11 𝑚𝑜𝑑 23 = 12
𝑞 𝑟1 𝑟2 𝑟 𝑡1 𝑡2 𝑡 = 𝑡1 − 𝑞𝑡2

11 23 2 1 0 1 −11
2 2 1 0 1 − 11 23

 1 0 −𝟏𝟏 23

𝑥𝑅 = (∆2 − 𝑥𝑃 − 𝑥𝑄) 𝑚𝑜𝑑 𝑝 = (122 − 3 − 9)𝑚𝑜𝑑 23 = 132 𝑚𝑜𝑑 23 = 17

𝑦𝑅 = (∆(𝑥𝑃 − 𝑥𝑅) − 𝑦𝑃) 𝑚𝑜𝑑 𝑝 = (12(3 − 17) − 13)𝑚𝑜𝑑 23 = −181 𝑚𝑜𝑑 23 = −20 𝑚𝑜𝑑 23 = 3
𝑃 + 𝑄 = (17,3)

∆= (
3𝑥𝑃

2 + 𝑎

2𝑦𝑃

) 𝑚𝑜𝑑 𝑝 = (
3(32) + 1

2 × 13
) 𝑚𝑜𝑑 23 = (

28

26
) 𝑚𝑜𝑑 23 = (

14

13
) 𝑚𝑜𝑑 23

= 14 × 13−1𝑚𝑜𝑑 23 = 14 × (−7) 𝑚𝑜𝑑 23 = −98 𝑚𝑜𝑑 23 = 17
𝑞 𝑟1 𝑟2 𝑟 𝑡1 𝑡2 𝑡 = 𝑡1 − 𝑞𝑡2
1 23 13 10 0 1 −1
1 13 10 3 1 − 1 2
3 10 3 1 −1 2 −7
3 3 1 0 2 − 7 23

 1 0 −𝟕 23

𝑥𝑅 = (∆2 − 2𝑥𝑃) 𝑚𝑜𝑑 𝑝 = (172 − 2 × 3) 𝑚𝑜𝑑 23 = 283 𝑚𝑜𝑑 23 = 7
𝑦𝑅 = (∆(𝑥𝑃 − 𝑥𝑅) − 𝑦𝑃) 𝑚𝑜𝑑 𝑝 = (17(3 − 7) − 13) 𝑚𝑜𝑑 23 = (−81) 𝑚𝑜𝑑 23 = −12 𝑚𝑜𝑑 23 = 11
2𝑃 = (7,11)

[5 marks]

+

[5 marks]

4 Write a short note on Linear feedback shift register (LFSRs). Explain the working of a 4-bit
LFSR and show the output sequence if the seed state is 1111, justify it as the maximal length
code.

[10 marks]

Ans LINEAR FEEDBACK SHIFT REGISTERS (LFSR):
Shift register sequences are used in both cryptography and coding theory. E.g., stream ciphers based

on shift registers have been used in military cryptography. A feedback shift register is made up of

two parts:

➢ A shift registers

➢ Feedback function.

The shift register is a sequence of bits. (If it is n-bits long, it is called an n-bit shift register.). Each time

a bit is needed, all the bits in the registers are shifted 1 bit to the right. The new left-most bit is

computed as a function of the other bits. The output of the shift register is the 1 bit, often the least

significant bit. The period of a shift register is the length of the output sequence before it starts

repeating. Cryptographers have liked stream ciphers made up of shift registers.

[10 marks]

4

Figure: feedback shift register

• The simplest kind of feedback shift register is a linear feedback shift register (LFSR). The

feedback function is simply the XOR of certain bits in the register, the list of these bits is

called tap sequence also called as Fibonacci configuration.

Figure: Linear feedback shift register

• The simple 4-bit LFSR can be shown in figure below. Here the first and the fourth bits are

tapped. If it is initialized with the value 1111, it produces the following sequence of internal

states before repeating.

Figure: 4-bit LFSR

S.N. Register state Output
1 1111 1
2 0111 1
3 1011 1
4 0101 1
5 1010 0
6 1101 1
7 0110 0
8 0011 1
9 1001 1
10 0100 0
11 0010 0
12 0001 1
13 1000 0
14 1100 0
15 1110 0
16 1111 0

.

The output sequence is the string of least significant bits.: 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 ……

• The shift registers filled with zeros will cause the LFSR to output a never-ending stream of

zeros – this is particularly not useful.

• Only LFSR with certain tap sequences will cycle through all 2𝑛 − 1 internal states; these are

maximal period LFSRs. The resulting output is called an m-sequence.

• For maximal period LFSR, the polynomial formed from a tap sequence plus the constant 1

must be primitive polynomial mod 2.

• A primitive polynomial of degree n is an irreducible polynomial if it divides 𝑥2𝑛−1
+ 1 but not

𝑥𝑑 + 1 for any d that divides 2𝑛 − 1.

• There is no easy way to generate the primitive polynomial mod 2 for a given degree. The

easiest way is to choose a random polynomial and test whether it is primitive. But it is

complicated as- something like testing random numbers for primality.

• E.g. the polynomial (32, 7, 5, 3, 2, 1, 0) means that the following polynomial is primitive

5

modulo 2. (Polynomial is: 𝑥32 + 𝑥7 + 𝑥5 + 𝑥3 + 𝑥2 + 𝑥 + 1).

• It’s easy to turn this into maximal-period LFSR. The first number is the length of the LFSR.

The last number is always 0 and can be ignored. All the number except 0, specify the tap

sequence. It means, if you take a 32-bit shift register and generate the new bit by XORing the

thirty-second, seventh, fifth, third, second and first bits together, the resulting LFSR will be

maximal length, it will cycle through 232 − 1 values before repeating. The C code for the LFSR

is:
Int LFSR(){

 Static unsigned long ShiftRegister = 1;

 /* Anything but 0. */

 ShiftRegister = ((((ShiftRegister >> 31)

 ^ (ShiftRegister >> 6)

 ^ (ShiftRegister >> 4)

 ^ (ShiftRegister >> 2)

 ^ (ShiftRegister >> 1)

 ^ ShiftRegister))

 & 0×00000001)
 << 31)

 | (ShiftRegister >> 1);

 Return ShiftRegister & 0×00000001;
}

Figure: 32-bit long maximal-length LFSR

• This code is more complicated when the shift register is longer than the computer’s word

size.

• E.g. if (a, b, 0) is primitive, then (a, a-b, 0) is also primitive. If (a, b, c, d, 0) is primitive, then (a,

a-d, a-c, a-b, 0) is also primitive. Mathematically

If 𝑥𝑎 + 𝑥𝑏 + 1 is primitive, so is 𝑥𝑎 + 𝑥𝑎−𝑏 + 1
If 𝑥𝑎 + 𝑥𝑏 + 𝑥𝑐 + 𝑥𝑑 + 1 is primitive, so is 𝑥𝑎 + 𝑥𝑎−𝑑 + 𝑥𝑎−𝑐 + 𝑥𝑎−𝑏 + 1

• Primitive polynomials are faster in software, because only two bits of the shift register have

to be XORed to generate each new bit.

• The polynomials are generally sparse, means they have very few co-efficient. Sparseness is

always a source of weakness, sometimes enough to break the algorithm. It is better to use

dense primitive polynomial, those with a lot of coefficients for cryptographic applications.

Generating dense primitive polynomials modulo 2 is not easy.

5 List out different types of LFSR-based Keystream generator. Discuss Geffe Generator and
generalized gaffe generator in detail with necessary diagram.

[10 marks]

Ans The list of LFSR based keystream generators are:
a) Geffe Generator
b) Generalized Geffe Generator
c) Jennings Generator
d) Beth-Piper Stop-and-Go Generator
e) Alternating Stop-and-Go Generator
f) Bilateral Stop-and-go Generator
g) Threshold Generator
h) Self-Decimated Generator
i) Multispeed Inner-Product Generator
j) Summation Generator
k) DNRSG (dynamic random-sequence generator)
l) Gollmann Cascade

[2 marks]
+

6

m) Shrinking Generator
n) Self-Shrinking Generator

Geffe Generator:
This generator uses three LFSRs, combined in a nonlinear manner. Two of the LFSRs are input a
multiplexer and the third LFSR controls the output of the multiplexer. If 𝑎1, 𝑎2 𝑎𝑛𝑑 𝑎3 are the output
of the three LFSRs, the output of the Geffe generator can be represented as: 𝑏 = (𝑎1^𝑎2) ⊕

((¬𝑎1^𝑎3)). If the LFSR have length 𝑛1 , 𝑛2 𝑎𝑛𝑑 𝑛3 respectively, then the linear complexity is:
(𝑛1 + 1)𝑛2 + 𝑛1𝑛3

Figure: Geffe generator

Although this generator looks good on paper, it is cryptographically weak and falls to a correlation
attack.
Generalized Geffe Generator:

Instead of choosing between two LFSRs, this scheme chooses between 𝑘 LFSRs, where 𝑘 is power of
2. There are 𝑘 + 1 LFSRs total. LFSR-1 must be clocked log2 𝑘 times faster than the other 𝑘 LFSRs.
Though this scheme is complex than Gaffe generator, same kind of correlation attack is possible.

Figure: Generalized Geffe generator

[4 marks]

+

[4 marks]

6 Write a short note on the following:
a) A5
b) HUGHES XPD/KPD

[10 marks]

Ans A5:
A5 is a stream cipher used to encrypt GSM (Group Special Mobile). That is the non-American standard

for digital cellular mobile telephones. It is used to encrypt the link from the telephone to the base

station. The rest of the link is unencrypted, the telephone company can easily eavesdrop on our

conversation. Originally, it was designed to prohibit export of phones to some country. It is being

discussed now, whether A5 might harm export sales. There is also a rumor as, various NATO

intelligence agencies had a catfight in the mid-1980s over whether GSM encryption should be strong

or weak. Germans wanted strong cryptography, as they were sitting near the Soviet Union. But other

counties overruled them. A5 is a French design. A British telephone company gave all the

documentation to Bradford University without a nondisclosure agreement. It leaked and was

eventually posted to the internet. A5 consists of three LFSRs; the register lengths are 19,22 and 23, all

the feedback polynomials are sparse. The output is the XOR of the three LFSRs. A5 uses variable clock

control. Each register is clocked based on its own middle bit, XORed with the inverse threshold

function of the middle bits of all three registers. Generally, two LFSRs clock in each round. There is a

trivial attack requiring 240 encryptions: Guess the contents of the first two LFSRs, then try to

determine the third LFSR from the key stream. A5 is very efficient. It passes all known statistical tests,

[5 marks]

+

7

its only weakness is, its registers are very short enough to make exhaustive search feasible. Variant of

A5 with longer shift registers and denser feedback polynomial should be secure.

HUGHES XPD/KPD:
This algorithm is developed by Hughes Aircraft corp. They put it in army tactical radios and direction-

finding equipment for sale to foreign militaries. It was designed in 1986 and called XPD, for

Exportable Protection Device. Later renamed as KPD – Kinetic Protection Device. The algorithm

uses a 61-bit LFSR. There are 210 different primitive feedback polynomials, which were approved by

the NSA. The key selects one of the polynomials as well as the initial state of the LFSR. It has eight

different nonlinear filters, each of which has six taps from the LFSR and which produces 1 bit. The bits

combine to generate a byte, which is used to encrypt or decrypt the data stream. This algorithm looks

impressive. The NSA allows exports, so there must be some attack on the order of 240 or less.

[5 marks]

7 Write a short note on
a) Algorithm M and write the C code for it.
b) PKZIP

[10 marks]

Ans ALGORITHM M:
The name is from Knuth. It’s a method for combining multiple pseudo-random streams that increases

their security. One generator’s output is used to select a delayed output from the other generator.

This has strength in that if prngA were truly random, one could not learn anything about prngA. If

prngA were of the form that it could be cryptanalyzed only if its output were available in order (i.e.

only if prngB were cryptanalyzed first) and otherwise it is truly random, then the combination would

be secure.
C Program:

define ARR_SIZE (8192) /* for example – larger the better */

Static unsigned char delay[ARR_SIZE];

unsigned char prngA(void) ;

long prngB(void) ;

void init_algM(void)

{

 long i ;

 for (i = 0 ; i < ARR_SIZE ; i++)

 delay = prngA() ;

} /* init_algM */

unsigned char algM(void)

{

 long j, v ;

 j = prngB() % ARR_SIZE ; /* get the delay[] index */

 v = delay[j] ; /* get the value to return */

 delay[j] = prngA() ; /* replace it */

 return (v) ;

} /* algM */

PKZIP:
It was designed by Roger Schlafly and built into the PKZIP data compression program. It is a stream

cipher that encrypts data one byte at a time. This algorithm is available in version 2.04g. The

algorithm uses three 32-bit variables, initialized as follows:

𝐾0 = 305419896
𝐾1 = 591751049
𝐾2 = 878082192

It has an 8-bit key, 𝐾3, derived from 𝐾2. Here is the algorithm:

𝐶𝑖 = 𝑃𝑖^𝐾3
𝐾0 = 𝑐𝑟𝑐32(𝐾0, 𝑃𝑖)

𝐾1 = 𝐾1 + (𝐾0&0x000000ff)

[5 marks]

+

[5 marks]

8

𝐾1 = 𝐾1 ∗ 134775813 + 1
𝐾2 = 𝑐𝑟𝑐32(𝐾2, 𝐾1 ≫ 24)

𝐾3 = ((𝐾2|2) ∗ ((𝐾2|2)^1)) ≫ 8

The function crc32 takes the previous value and a byte, XORs them, and calculates the next value by

the CRC polynomial denoted by 0xedb88320. In practice, a 256-entry table can be precomputed and

the crc32 calculation becomes:

𝑐𝑟𝑐32(𝑎, 𝑏) = (𝑎 ≫ 8)^𝑡𝑎𝑏𝑙𝑒[(𝑎 &0x𝑓𝑓) ⊕ 𝑏]
The table is precomputed by the original definition of crc32: 𝑡𝑎𝑏𝑙𝑒[𝑖] = 𝑐𝑟𝑐32(𝑖, 0)

To encrypt a plaintext stream, first loop the key bytes through the encryption algorithm to update the

keys. Ignore the cipher text in this step. Then encrypt the plaintext, one byte at a time. Twelve random

bytes are prepended to the plaintext. Decryption is similar to encryption except that 𝐶𝑖 is used in the

second step of the algorithm instead of 𝑃𝑖 .

Security of PKZIP: PKZIP attack requires 40 to 200 bytes of known plaintext and has a time

complexity of about 227. It can be done in few hours on our personal computer. If the compressed file

has any standard header, getting the known plaintext is no problem.

