S I N O N A A

* CMR INSTITUTE OF TECHNOLOGY, BENGALURU.
ACCREDITED WITH A+ GRADE BY NAAC

Internal Assessment Test 3 — Dec 2022

Sub: | Verilog HDL Sub Code: | 18EC56 | Branch: | ECE

Date: 27/1/22 | Duration: | 90 min’s | Max Marks: |50 | Sem/Sec: 5%A,B,C,D OBE

Answer any FIVE FULL Questions MARKS | CO |RBT

1 Use dataflow description style of Verilog HDL to design 4-bit adder using Carry look [10] CO03 L2
ahead logic.
2 Describe the following statements with an example: initial and always [10] CO4 L3

3 What are blocking and non-blocking assignment statements? Explain with examples. [10] CO4 L2

4 With syntax explain conditional, branching and loop statements available in Verilog [10] CcO4 L2
HDL behavioral description.
5 Define a function to multiply two 4-bit numbers a and b. The output is an 8-bitvalue. Co4 L3

6 Create a design that uses the 4-bit full adder. Use a conditional compilation [10] CO05 L1
(ifdef). Compile the fulladd4 with defparam statements if the text macro
DPARAM is defined by the “define statement; otherwise, compile the fulladd4
with module instance parameter values.

7 What is logic synthesis? Explain the basic computer-aided logic synthesis using [10] | C06 L2
flow chart also List the problems addressed by automated logic synthesis.

USN ‘ | | éyﬁems <
") CMRIT
Internal Assessment Test 3 — Dec 2022
Sub: Verilog HDL Sub Code: | 18EC56 ‘ Branch: ‘ ECE
Date: 27/1/22 | Duration: | 90 min’s | Max Marks: |50 | Sem/Sec: 5%A,B,C,D OBE

Answer any FIVE FULL Questions MARKS | CO \RBT

1 Use dataflow description style of Verilog HDL to design 4-bit adder using Carry [10] CO3 L2
look ahead logic.

2 Describe the following statements with an example: initial and always [10] CO4 L3
3 What are blocking and non-blocking assignment statements? Explain with [10] CcO4 L2
examples.

4 With syntax explain conditional, branching and loop statements available in Verilog [10] CO4 L2
HDL behavioral description.

5 Define a function to multiply two 4-bit numbers a and b. The output is an 8- Co4 L3
bitvalue.

6 Create a design that uses the 4-bit full adder. Use a conditional compilation [10] CO05 L1
(ifdef). Compile the fulladd4 with defparam statements if the text macro
DPARAM is defined by the “define statement; otherwise, compile the fulladd4
with module instance parameter values.

7 What is logic synthesis? Explain the basic computer-aided logic synthesis using [10] | CO06 L2
flow chart also List the problems addressed by automated logic synthesis.

1.Use dataflow description style of Verilog HDL to design 4-bit adder using Carry look ahead logic.

Example 6-5 4-bit Full Adder with Carryv Lookahead

module fulladd4 (sum, < _out, a, b, c_in];
Y Inputs and ocutputs
cutput [2:0] sum;

cutput < out;
input [2:0]1 a,.b;
input o_in;

Y Internal wires
wire]_:'D-' gDr F'j- " gJ- r F'E - g: r]_:;'3 r g?’;

wire o4, <32, <=2, <l;

/Y compute the p for sach stags
assign pl = a[0] ™ b[0O].,
rl = all] =~ B[1]1,

Ps = El[z] ~ b[z]t
p3 = al[3] " b[3];

/{ compute the g for sach stage
assign g0 = a[0] & b

(01
gl = a[l] & b[1],
g2 = a[2] & b[2],
g3 = al3] & b[3];

// compute the carry for each stage
// Note that c in is egquivalent <0 in the arithmstic equation for
// carry lookahead computation
assign cl gd | (p0 & ¢ in),
c2 =gl | (pl & ga} | (pl & p0 & c_in),
c3 = g2 | (p2 & gl) | (p2 & pl & g0) | (P2 & pl & RO :_in},
c4 =g3 | (p2 & g2) | (p3 & pZ & gl) | (p3 & p2 & pl & g0) |

(p3 & p2 & pl & p0 & c_in);

5]

// Compute 3Sum

assign sum[0] = p0 * ¢ im,
sum[l] = pl * <1,
sum[Z2] = p2 "~ 2,

sum[3] = p3 " c3;

// RAssign carry output
assign c_out = c4;

endmodule

2. Describe the following statements with an example: initial and always

® Two basic structured procedure statements
always
initial
O All behavioral statements can appear only inside these blocks
O Each always or initial block has a separate activity flow (concurrency)
Start from simulation time 0

Structured Procedures:
initial statement
L Starts at time 0
® Executes only once during a simulation
® Multiple initial blocks, execute in parallel
O All start at time 0
O Each finishes independently

® Syntax:
initial
begin
// behavioral statements
end
o Example:

module stimulus;
reg x,y, a, b, m;

initial
m=1"b0;
initial
begin
#5 a=1’bl;
#25 b=1"b0;
end
initial
begin
#10 x=1"b0;
#25 y=1"bl;
end

initial
#50 S$finish;
endmodule

always statement
Start at time 0
Execute the statements in a looping fashion
Example
module clock_gen(output reg clock);
/I Initialize clock at time zero
initial
clock = 1°b0;
/I Toggle clock every half-cycle (time period =20)
always
#10 clock = ~clock;
initial
#1000 $finish;
endmodule

3.What are blocking and non-blocking assignment statements? Explain with examples.
Procedural Assignment
® |t updates the value of reg, integer , real or time variables.
® Types of Procedural Assignment :
® Blocking Statement
® Non blocking Statement

[The two types of procedural assignments
O Blocking assignments
O Non-blocking assignments
® Blocking assignments
O are executed in order (sequentially)
O They use = operator
O Example:
reg x,y, z;
reg [15:0] reg_a, reg_b;
integer count;
initial begin
x=0; y=1; z=1;
count=0;
reg a= 16’b0; reg b =reg_a;
#15 reg_a[2] = 1"bl;
#10reg_b[15:13] ={x, y, z};
count = count + 1;
end

® Non-blocking assignments

O All statements are executed parallely , except the statements with delays specified.
O They use <= operator
O Example:

reg x,y, z;

reg [15:0] reg_a, reg_b;

integer count;

initial begin

x=0; y=1; z=1;

count=0;
reg a=16’b0; reg b =reg_a;
#15 reg_a[2] <=1’bl;
#10 reg_b[15:13] <={x, y, z};
count <=count + 1;

end
With syntax explain conditional, branching and loop statements available in Verilog HDL behavioral
description _ < - |
@JJﬂjnai /f}—g,lwa—l’\om Gead w 5 MOJW M“K
wdiho .
C)‘:NiA iy G"u)nu“” Oor\o_'J'io/\.J

3 Tyees
Cgov\c)\]'\ ou/\} Hama Huz \'&A‘M /SA-!U-PJ&

Dy

2 u¥mw 1
w —2lodennd-;

3) ,ug(mnc)-o ta_m_s\r-|;
dze JK[LOr\c_L) Foua =slenas
d"& -ll‘ (co«d—'b) l&\u_s\\,'g;

el W"‘M'/.

~ —

Soop: iy 2
b Mo . Weaidoy @
9>DOL||{.L o€ N

@W,J- ,Feom o lo 127 |
22 Reprnls /
C> lmlhg\) 7
1 (3 v) /
')e"'"e\fe‘? 82’,,‘_“,‘]—;0;

. wL lo Ceownl-< 128D

be ﬁdup'm{(Counk=7d!

Counl-= (o WHZ Qou,-,L)

| wJ/LOJ '
=0.% /4
‘ c‘::;,J:J/(124

th;ﬂaﬂ Coanj'
b uf»aas
QMD) Counl-= COwA.L —’;IC‘OG /QP

9 e

@‘/
YQan.J?' g 01"

i

ol e

/

T o vl &W
fuobs TIP3 frucbr
| |

L o

émz(Koz
Lndved

Clode =''bo?
?‘?W "o Clode v oede -

Exanupl A - @

‘ OECO':‘LQ 5 ;
00 o+
o\ et | e
s a¥b
X! @y
hi o hxa os e 3N, ke
Cone Copp—> Trech OLHZ Z7 Rbk
&'\o&o-“f:q'*’b'/ Q) o-pcoc\:z o0 3{_5
f
&a'b oV~ %:'O"‘O; . 0\ o -b
atbrot Y= kb to| eb
gl Y= alby] a2b
' 0
end case - (D XZ)(
‘X °[P X i~
Psm Ao
@951 fred]
o2
- l7_ slrze s
[0 5%} QM(
Z\/J PM—ALBU/\LA vJJLQ
= /x - _ on mz

CCU»‘?X (UP) elH«uo
Aboo: Y= ai—lo)

M Rame an Cone Cond unaleer,

: .
Lol ~ ot &\) 0% —> checks @ ‘a: a+b
> «"'6, -b, O\ Vald olp

Q/‘Eko.\z:a#—b; l%g”e“‘\é?g L
as "

Q)«_c)\ o T

12
2\

&“bui«k:oiﬂa} @ ° o j » j@
[

q,d 218 ‘b;aabao o3 |) ox

[rESwpess

/@ 2 e Py e ¥ (1) Same o2, e

@ X ;
d"”'E_C_i‘f‘iz * X) 2

X0

) ?i Volid o lp¢

o Pl

QLOA'L“COJ\Q

—=

5. Define a function to multiply two 4-bit numbers a and b. The output is an 8-bitvalue

A eExS—2 vl ip 1 ur
oo ciy 1 = E = = = =%

TTurxc T iAo C~Z72=0C] Iy ociac it >
I xxp>uat | I = 3y | Sy >
Ioae=cy i
TDrrocduc T == i o
=xacq
erndcaArfuarnctT 3o

r=Ccy C=S =0 Sy
T =CcF C =07 resuilc o

dxmxic i=1
o= Ccr iz
=—=2"'"AaA1lS = Io—a ' 3210 =
rrFresulcc—pmrodcduc o (= kB) =
SAispl=w (™ = > = =24d'T_ re==wualt) =
[=FsT=1

erncihrmaocia l =

6. Create a design that uses the 4-bit full adder. Use a conditional compilation ("ifdef). Compile the fulladd4
with defparam statements if the text macro DPARAM is defined by the "define statement; otherwise,

compile the fulladd4 with module instance parameter values.

A 1-bit full adder FA is defined with gates and with delay parameters as shown below. // Define a 1-bit full

adder module fulladd(sum,c_out,a,b,c_in);

parameter d_sum=0,d_cout=0; //1/0 port declarations
output sum,c_out;

input a,b,c_in; //Internal nets

wire s1,c1,c2;
/lInstantiate logic gate primitives
xor(sl,a,b);

and(cl1,a,b);

xor #(d_sum) (sum,s1,c_in); //delay on output sum isd_sum
and (c2,s1,c_in);

or #(d_out) (c_out,c2,cl); //delay on output c_out is d_cout
endmodule

] - =

Defire a 4-bit full adder fulladdd 85 shawn in example 5-8, but pass the following paraméter valuss o the instances, using

the twa methods digcussead in the boalk.

Instance Delay Walues

Fevld d_sum=1,d_cout-1
fal d_sum=2 d_oout=2
fad d_sum=2 d_ocout=2
fa3 d_sum=3d_cout=3

a. Build the fullsddd rmodule with defparm stabements ta change inStance parameber valuss, Simulabe the 4-bit full sdder
using the stimulus shown is examplé 5-9 . Explain the effiect of the full adder delays on the times when sutputs af the

adder appear. [Use delays af 20 instésd af 5 used in this stirmulus.)

b. Build the fulladdd with délay valees passed to ingtances fal, fal, fa2, fa3 during instantistion. Resimuolate the 4-bit

adder, using the stimulus sbove, Check if the results are identical.

MY drEsWwer:

Fi 4-bit full adder

output [3:0] sum;
cutput <& out;
input [3:0] a,b:
input ¢_in:

0 =] o A o &R

mocdule fulladdd(sum,c out,a,b,c_in):;

10
11
12
13
14
15
16
17
18
19
20
21

wvire c¢l,c2,c3;

defparam fa0.d suw=1,fa0.d _cout=1,
fal.d suw=2,fal.d_cout=2,
faz.d sun~3, faZ.d _cout=3,
fa3.d suw=4,fad.d _cout=4;

fulladd fa0 (sun(0],cl,a[0],b([0],c_in):
fulladd fal (sum[1l],c2,afl)],b[1l],cl):
fulladd fa2 (sum(2),c3,a[2],b[2],c2):
fulladd fa3 (sum[3],c_out,a[3],b[3],c3):

endmodule

T R B

// 4-bic full adder
module fulladd4d(sum, c_ouc,a,b,c_1in);

output [3:0) swo;
output c_out;
input [(3:0) a,b;
input c_in;

vire cl

2C2,C63;3

/*defparam fal.d sun=l,fal.d cout=1,

fulladd
fulladd
fulladd
fulladd

fal.d_suw=Z, fal.d_cout=z,
faZ.d_swe=3,faZ.d_cout=3,
fa3.d4_sum=4,fa3.d_cout=4;*/

#(.d_sum(l),.d_cout(1l)) faO(swn(0],cl,a(0],b[0],c_in):
#(.d_sun(2),.d_couc(2)) fal(swn(l],c2,a(1),b(1]),cl):
#(.d_sum(S),.d_pout(sj) fa2 (sum(2]),c3,a(2),b[2),c2):
#(.d_sum(Q),.d_cout(Q)) £a3 (sum(3) ,c_outr,a(3),b(3),c3):

endmodule

mrarea -

//ex9-4 ifdef

"ifdef DPARAM
module fulladdQ_d;

endmodule
‘else
module fulladd4 p;

endmodule
‘endif

7. What is logic synthesis? Explain the basic computer-aided logic synthesis using flow chart also List the
problems addressed by automated logic synthesis.

logic synthesis is the process of converting
a high-level description of the design into
an optimized gate-level representation,
given a standard cell library and certain
design constraints.

Impact of Logic Synthesis

Figure 14-1. Designer's Mind as the Logic Synthesis Tool

Acrchitectural
Description

v

Partitioning into
High-Level Blocks

- - - - - - = -_
|

- Designer’s Mind

Design Constraints

Gate-Level
Representation

I

design iterations

P - - - ——

Meets
Design Constraints

Standard Cell
Library

{technology
dependent)

Optimized Gate-
Level Representation

Figure 14-1. Bazic Computer-Aided Logic Synthesis Process

Architectural
I'M-c'riPliun

&

_.{ High-Lovel

Description

!

Cate-Level Metlis

‘ Optimized

-

e
pe

Mg and Rowibe

301

Computer-Aided [

1 \ Standard Cell
Library

[i] - Mt
—i Crretraings

= Lesign Corgtraints

{technology
dependent)

* Logic synthesis has revolutionized the digital design industry by significantly improvingproductivity
and by reducing design cycle time. Before the days of automated logicsynthesis, when designs were
converted to gates manually, the design process had thefollowing limitations:

For large designs, manual conversion was prone to human error. A small gate missed somewhere could
mean redesign of entire blocks.

» The designer could never be sure that the design constraints were going to be met until the gate-level
implementation was completed and tested.

* A significant portion of the design cycle was dominated by the time taken to convert a high-level design
into gates.

« If the gate-level design did not meet requirements, the turnaround time for redesign of blocks was very
high.

* What-if scenanios were hard to venfy. For example, the designer designed a block
in gates that could mn at a cycle time of 20 ns_ If the designer wanted to find out
whether the circuit could be optinuzed to rmun faster at 15 ns, the entire block had
to be redesigned. Thus, redesign was needed to venfy what-1f scenanos.

+ Fach designer would implement design blocks differently. There was little
consistency in design stvles. For large designs, this could mean that smaller
blocks were optinuzed, but the overall design was not optimal.

+ [If a bug was found in the final. gate-level design, this would sometimes require
redesign of thousands of gates.

* Tinung, area, and power dissipation in library cells are fabnication-technology
specific. Thus if the company changed the IC fabrication vendor after the gate-
level design was complete, this would mean redesign of the entire circuit and a
possible change in design methodology.

¢ Design rense was not possible. Designs were technology-specific, hard to port,
and very difficult to reuse.

