ush | [0 L L L

Internal Assessment Test 3 — Jan 2022

Sub: | Introduction to Artificial Intelligence Sub Code: | 18CS753 |Branch: ‘ ECE/EEE/ME/CIV
Date: | 25/01/22 | Duration: | 90 mins | Max Marks: | 50 | Sem/ Sec: VI OBE
Answer any FIVE FULL Questions MARKS CoO RBT
1. Outline the algorithm for minimax(position, depth, players) and explain [10] Cos3 L2
2. Explain Iterative deepening. Write algorithms for Depth-First iterative deepening [10] Cos3 L2
and lterative deepening- A*
3. Apply Candidate Elimination Algorithm to narrow the version space and show its [10] COo3 L3
trace using an example.
4a. | Explain Knowledge acquisition process with example. [05] CO4 L2
4b. | Explain with example Learning by taking advice [05] CO4 L2
5a. | Explain Rote learning [05] CO4 L2
5b. | Make use of learning the concept CUP and write a note on Explanation- Based [05] CO4 L3
Learning
6 What is learning. Explain Winston’s learning program with example. [10] CO4 L1

ush | [0 L L L

o (EARS
o" *

CELEg,
« CelEgy
iy,

and lterative deepening- A*

* The name “iterative deepening” derives from the fact that on each iteration,

: CMRIT
Internal Assessment Test 3 — Jan 2022
Sub: | Introduction to Artificial Intelligence Sub Code: | 18CS753 |Branch: ‘ ECE/EEE/ME/CIV
Date: | 25/01/22 | Duration: | 90 mins | Max Marks: | 50 | Sem/ Sec: VII OBE
Answer any FIVE FULL Questions CO RBT
Y Q MARKS
1. Outline the algorithm for minimax(position, depth, players) and explain [10] COo3 L2
* MINIMAX needs to return 2 results:
1. The backed-up value of the path it chooses.
2. The path itself.
* MINIMAX returns a structure containing both results & the two functions,
VALUE and PATH extract separate components.
« Initially it takes 3 parameters, a board position, the current depth of search
and the player to move.
* Theinitial call to compute best move from CURRENT position is
. MINIMAX (CURRENT, O, PLAYER-ONE)
if PLAYER-ONE is to move, or
~ MINIMAX (CURRENT, O, PLAYER—-TWO)
) PLAYER-"I‘WO is to move. D
Algorithm: MINIMAX (Position, Depth, Player)
< 1. If DEEP-ENOUGH(Position, Depth), then return the structure
VALUE = STATIC(Position, Player);
PATH = nil ;
This indicates that there is no path from this node and that its value is that determined by the -
evaluation function.) g 481 |
2. Otherwise, generate one more ply of the tree by calling the function MO VE_GEN(PO““%" . ‘
setting SUCCESSORS to the list it returns. e »
3. If SUCCESSORS is empty, then there are no moves to be made, so return the same structure thy W
have been returned if DEEP-ENOUGH had returngd.tiue, s
4. If SUCCESSORS is not empty, then examine each element in turn and keep track of th%m
is done as follows.]
Initialize BEST-SCORE to the minimum value that STATIC can return. It will be updated to reflect g,
— Tk
best score that can be achieved by an element of SUCCESSORS.
For each element SUCC of SUCCESSORS, do the following: .
(2) Set RESULT-SUCC (o | C geurssive ald.
MINIMAX(SUCC, Depth + 1, OPPOSITE(Player) of than
This recursive call to MINIMAX will actually carry out the exploration of SUCC.
(b) Set NEW-VALUE to - VALUE(RESULT—S[{CQL This will cause it to reflect the merits of %
position from the opposite perspective from that of the next lower level.
(c) If NEW-VALUE > BEST-SCORE, then we have found a successor that is better than any &
have been exami ar. Record this by doing the following:
(i) Set BEST-SCORE to NEW-VALUE.
(ii) The best known path is now from CURRENT to SUCC and then on to the appropriate 3
down from SUCC as determined by the recursive call to MINIMAX. So set BEST-PATS
WWUM@QLQLPATH(RESULI;&QQQ .
5. Now that all The successors have been examined, we know the value of Position as well as which®
to take from it. So return the structure
VALUE = BEST-SCORE
PATH = BEST-PATH
™
4 Whe.n Lhe_ipi(ial cal! to MINIMAX returns, the best move from CURRENT is the first clemenl‘tj“‘P\A
2. Explain Iterative deepening. Write algorithms for Depth-First iterative deepening [10] Cos3 L2

the tree is searched one level deeper.

-

1,

\,_\,—-z;/‘c ifithay geoccel Tt
\,_V n,vn\.»u\. Town AT T Y Y Lt i
il L4k Wit ot e TaioXed here
ap? :
tareion ('S‘"Q !’\‘@ Hteration 2.

Iteration 3.

Iteration 4.

Fig. 12,10 Iterative Deepening

* An algorithm called depth-first iterative deepening(DFID) combines the
best aspects of depth-first & breadth-first search.

k@rnhm. Depth-First Iterative Deepening

"1, Set SEARCH-DEPTH = 1,
2. Conduct a depth-first search o a depth of SLARCH-DE, I, If 4 solution path is found, they -

3. Otherwise, increment SEARCH-DEPTH by | and go to sep2,)

* Clearly, DFID will find shortest solution path to goal state.

* The maximum amount of memory used by DFID is proportional to humber
of nodes in that solution path.

* DFID is optimal algorithm in terms of space and time for uninformed
search.

» lterative deepening can also be used to improve the performance of A*
search algorithm.

* The major practical difficulty with A* is the large amount of memory it
requires to maintain the search node lists.

‘m}f ithm: Iterative-Deepening-A*
1. Set THRESHOLD = the heuristic evaluation of the start state.
2. Conduct a dcp(h first surth pruning any branch when its total cost function (g + i) ¢ :
THRESHOLD.* If a solution path is found during the search, return it,
3. Otherwise, incremen THRESHOLD by the mlmmum amount it was exceeded during the pre

e

‘Sep, and then go10 Siep2,/ -
» lterative- Deepening A* is guaranteed to find an optimal solution, provided
that h’ is an admissible heuristic.

Apply Candidate Elimination Algorithm to narrow the version space and show its
trace using an example.

* The algorithm for narrowing VS is called Candidate Elimination Algorithm.
» Tracing concept of CEA for the concept of “Japanese Economy Car”

[10]

CO3

L3

origin: Japan origin: Japan origin: Japan

mfr: Honda mfr : Toyota mfr: Toyota
color : Blue color : Green color : Blue
decade : 1980 decade: 1970 decade : 1990
type: Economy type : Sports type : Economy
+) (=) (+)

origin: USA origin: Japan

mfr : Chrysler mfr : Honda

color : Red color : White

decade : 1980 decade : 1980

type : Economy type : Economy

(=) (+)

Figure 17.12: Positive and Negative Examples of the Concept “Japanese economy car”

« G contains NULL and S contains 1* positive training example.

@ G = ((x;, x5, X3, X4, X5)}
S = {(Wapan, Honda, Blue, 1980, Economy)
* G is specialized to eliminate —ve example from VS
G VO Honda, v, WL (v vy, Blee, vy Xes
(e X Xy, TOROL Xods (87, Nne XNy Xge Lconomy))

* Remove values that are inconsistent with +ve example
* Replace constants with variables

O = . x, Blue, xy. xg), (X, X5, X3, X4. Economy)}

S = {(Japan. x5, Blue. x,;. Economy)}

» Sand G sets specify a version space.
» Sis unaffected but generalizing G set w.r.t —ve training example.

G = {(Japan, Xy, Blue, x,, xs), (Japan, Xy, X3, X4, Economy))

G = {(Japan, X5, X3, X4, Economy)}

S = {(Japan, x,. x5, x,, Economy))

» Sand G both are singleton.
» Algorithm has converged on Target Concept.

* Remove form G, inconsistent descriptions w.r.t +ve training example.

4a,

Explain Knowledge acquisition process with example.

expert knowledge, which is then translated into rules.
approximates expert-level performance.

knowledge efficiently.

These programs provide support for the following activities:
Entering knowledge.

Maintaining knowledge base consistency.

Ensuring knowledge base completeness.

W e

» 2 knowledge acquisition systems are as follows:

* Typically, a knowledge engineer interviews a domain expert to Elucidate
« After the initial system is built, it must be iteratively refined until it

» There are many programs that interact with domain experts to extract expert

[05]

CO4

L2

1. MOLE and
2. SALT

« MOLE is knowledge acquisition system for heuristic classification
problems, such as diagnosing diseases.

* An expert systems produced by MOLE accepts input data, comes up with a
set of candidate explanations or classifications that cover the data, then uses
differentiating knowledge to determine which one is best.

* MOLE interacts with domain expert to produce a knowledge base that a
system called MOLE-p uses to solve problems.

» The acquisition proceeds through several steps:

1. Initial knowledge base construction : MOLE tries to determine the
conditiond under which one explanation is correct.

* The expert provides covering knowledge i.e., the knowledge that a
hypothesized event might be the cause of certain symptom.

* MOLE then tries to infer anticipatory knowledge.

2. Refinement of knowledge base: MOLE now tries to identify the weakness
of knowledge base.

» One approach is to find holes & prompt the expert to fill them.

* Whenever MOLE-p makes an incorrect diagnosis, the expert adds new
knowledge.

* MOLE has been used to build systems that diagnose problems with car
engines, problems in steel-rolling mills and inefficiencies in coal-burning
power plants.

4b.

Explain with example Learning by taking advice

* When a programmer writes a series of instructions into a computer.
» The programmer is a sort of teacher & the computer is a sort of student.
» After being programmed, the computer is able to do something it previously
could not.
* Suppose the program is written in a high-level language like LISP.
* Some interpreter or compiler must intervene to change the teacher’s
instructions into code that the machine can execute directly.
* Mostow, describes a program called FOO, which accepts advice for playing
hearts, a card game.
* A human user first translates the advice from English into a representation
that FOO can understand.
* For example, “ Avoid taking points” becomes:
(avoid(take-points me) (trick))
+ FOO must operationalize this advice by turning it into an expression that
contains concepts & actions FOO can use when playing the game of hearts.
* One strategy is: UNFOLD an expression by replacing some term by its
definition.
» FOO comes up with:
(achieve(not(during(trick)(take-points me))))
* FOO considers advice to apply to the player called “me”.
* Next, FOO UNFOLDs definition of trick
(achieve(not(during(
scenario
(each pl(players)(play-card pl)
(take-trick (trick-winner)))
(take-points me))))
* In other words , player should avoid taking points during the scenario
consisting of

[05]

CO4

L2

1. Players playing cards &

2. One player taking the trick

* FOO then uses case analysis to determine which steps could cause one to
take points.

» Step 2 could affect taking points , so FOO-UNFOLDs the definition of
take-points:

(achieve (not (there-exists cl(cards-played)
(there-exists c2 (point-cards)
(during(take(trick-winner)cl)
(take me c2))))))

» This device says that the player should avoid taking point-cards during the
process of trick-winner taking the trick.

» The question for FOO now is: Under what conditions does (take me c2)
occur during (take(trick-winner)cl)?

» By using technique called partial match, FOO hypothesizes that points will
be taken if me= trick-winner and c2=cl.

» It transforms the advice into:
(achieve (not (and(have- points (cards-played))

(=(trick-winner) me))))

* This means “ Do not win a trick that has points”.

» Through a number of other transformations, FOO eventually settles on:
(achieve (>= (and(in-suit-led(card-of me))

(possible (trick-has-points)))
(low(card-of me)))

* At last, FOO has translated the rather vague advice “avoid taking points”
into a specific, usable heuristic.

* FOO is able to play a better game of hearts after receiving this advice.

5a.

Explain Rote learning

» It is mechanism of Caching

* When computer stores piece of data, data is cached so that recomputing is
not required.

» Caching is used by Al to improve performance & such caching is known as
Rote Learning.

* Samuel’s Checkers program used 2 types of learning: rote learning &
parameter adjustment.

» Samuels program used checkers game trees for representing states.

« Time constraints permitted it to search only a few levels in tree.

» Later static evaluation method was applied to board position.

» Then used the score obtained from this function to search the game tree.

* When search was complete, it propagated the score backwards and root
position had a score.

» It now chose the best move and also recorded the board position and score
at tree root.

Game Tree

i . reor{ i Storing Backed
m hraMo':,\ov\ o Fig.17.1 b

[05]

CO4

L2

L.« Game Tree
»e

A
TS i
> E
../ e \; -
g C D M
7‘ - -
. /N L\
EUFIIG| [H||! J||K [Q[[R] A
o — e) T | [-
Sord Scoves A - 10
ar
‘ Jacked-Up ¥
BB bl oo, S Fig17.1 Storing B

* Instead of using the static evaluation function to compute a score for
position A, the stored value for A can be used.

* Rote learning of this sort is very simple.

» But it needs some capabilities.

* These capabilities include:

v" Organized Storage of Information- in order for it to be faster to use a stored
value than it would be to recompute it, there must be a way to access the
appropriate stored value quickly.

v Generalization- to keep the number of stored objects to a manageable level,
some kind of generalization is necessary.

5b.

Make use of learning the concept CUP and write a note on Explanation- Based
Learning
« EBL programs accept the following as input:
1. A Training Example: What the Learning Program sees in the world. Ex:
the Car
2. A Goal Concept: A high level description of what the program is supposed
to learn

An Operationally Criterion: A description of which concepts are usable.

4. A Domain Theory: A set of rules that describe relationships between
objects & actions in a domain.

» From this EBL computes generalization of the training example that is
sufficient to describe the goal concept & also satisfies the operationality
criterion.

* An EBL program seeks to operationalize the goal concept by expressing it
in terms that a problem-solving program can understand.

w

Cup(Object23)
[r— S S S——
liftabie(Object23)
open-vessel(Obj
stable(Object23) (Otject2s)

18 Obyect23, Light
has-pat Otyect23, I'?(:n)(ﬂoio‘ "Gs*l)ﬂﬂ(()bject'z:! Cancavit -
Isaianse 10, hangis,) l;a(Cuncavifﬂ 2.' Concavit y)
tsa(Concavity 12, Upward—Poh);ﬁng)

has par Obtyect23, Bottom 1 9)
sa(Bottom 19, Bomun)
is{Bottom 19 Flat)

¥
g 1715 An Explanation

[05]

CO4

L3

What is learning. Explain Winston’s learning program with example.

* Learning means:
... changes in the system that are adaptive

i.e.. They enable s/y to do same task
Or
They enable s/y to do tasks more efficiently & effectively next time

» Learning covers wide range of phenomena and spectrum.

* The goal was “ to construct representations of the definitions of concepts in
blocks domain.

« Ex: it learned the concepts House, Tent and Arch shown in figure.

* Near miss is also shown in figure.

* Near Miss: its an Object similar to instances of concept in question.

Concept Near Miss

et feorngl e ¥
~ | A>T
- |57 o

Figure 17.2: Some Blocks World Concepts
* The program started with a line drawing of a blocks world structure.
» Then structural description was provided as input to learning program.
* Anexample of such a structural description for the house is shown here.
* Node A represents entire structure. Its composed of node B(Wedge) and
C(Brick)

Object - house Semantic net

D
has-pV has-part
—

n Supported - by

isa isa

reslir-cof

derer s -rrert-rricarry

>>

ixca

lefi-of
righii-of

P P P e e

[10]

CO4

L1

2 objects Marry: if they have faces that touch & have common edge.
Marry Relation= Arch — Near miss Arch

In comparison of 2 arches: the objects represented by node C are not
identical.

C-note link describes difference found by comparison routine. The
difference occurred in isa link.

Figure 1 7.4{ The Comparison of Two Arches l

At this point, new description of Arch is generated.

Node C is either a Brick or a Wedge.
At node Object: Brick & Wedge merge & arch is built as shown in figure
here

\ ’ IAYYS
Brick

does-not-marry

Figure 17.5: The Arch Description after Two Examples

