USN					

Internal Assessment Test 3 –Jan. 2022

Sub:	Design of Macl	hine Elements	s - 1			Sub Code:	18ME52	Branch:	Mecl	1	
Date:	25.01.2022	Duration:	90 min's	Max Marks:	50	Sem/Sec:	V/.	A&B		OE	E
		<u>Usage</u>		ll the Questions a handbook is p	ermi	ted		MA	RKS	СО	RBT
1.	Design a screw ja	ack with a lift	of 300 mm to	lift a load of 50	kN			[20]	CO5	L3
2.	Design a rigid fla flange is 4 MPa. of 93 MPa. Allow	The shaft, bo	lts and key are	e made up of ann				stress	15]	CO5	L3
3.	A bracket suppor shown. Calculate	_			— 100	etion is not to			15]	CO5	L3

USN					

Internal Assessment Test 3 – Jan. 2022

Sub:	Design of Macl	hine Elements	s - 1			Sub Code:	18ME52	Branc	h: Mec	h	
Date:	25.01.2022	Duration:	90 min's	Max Marks:	50	Sem/Sec:	V/.	A&B		OE	BE
		<u>Usage</u>		ll the Questions a handbook is p	ermit	ted		N	MARKS	СО	RBT
1.	Design a screw ja	ack with a lift	of 300 mm to	lift a load of 50	kN				[20]	CO5	L3
2.	Design a rigid fla flange is 4 MPa. of 93 MPa. Allow A bracket suppor	The shaft, boly wable crushing	Its and key are g stress for ke	e made up of ann y is 186 MPa.	ealed	steel having a	llowable shear s	stress	[15]	CO5	L3
<i>J</i> .	shown. Calculate			stress in the thro				do do	[15]	CO5	L3

USN									
-----	--	--	--	--	--	--	--	--	--

Internal Assessment Test 3 –Jan. 2022

Sub:	Design of Mac	hine Elements	s - 1			Sub Code:	18ME52	Branch:	Mech	1
Date:	25.01.2022	Duration:	90 min's	Max Marks:	50	Sem/Sec:	V/.	A&B		OBE

Scheme of Evaluation

Prepared by: Prof.Manikandan H

Q.No	Scheme	Marks
1.	Design of Screw and check for screw	4
	Design of collar	4
	Design of nut	2
	Design of handle	2
	Design of cup	2 2 2
	Efficiency of screw	2
	Check for overhauling	2
	Design of Body	2
2.	Torque calculation	1
	Design of shaft	1
	Bolt circle diameter	1
	Design of hub	3
	Design of flange and check for flange	3
	Design of bolts and check for bolt	3
	Design of key and check for key	3
3.	Free body diagram	3
	CG of weld	2
	Finding r, $\cos \theta$ and e	2 2
	Direct shear load per unit length (Pd)	2
	Torsional load per unit length (Pn)	2
	Resultant load per unit length (Pr)	2
	Size of the weld (w)	2

Internal Assessment Test 3 –Jan. 2022

Sub:	Design of Mac	hine Elements	s - 1			Sub Code:	18ME52	Branch:	Mecl	1
Date:	25.01.2022	Duration:	90 min's	Max Marks:	50	Sem/Sec:	V/.	A&B		OBE

Solutions

1.

:. Allowable or Permissible stress $\sigma = \frac{\sigma_y}{FOS} = \frac{328.6}{3} = 109.53 \text{ N/mm}^2$

Allowable shear stress $\tau = 0.5 \ \sigma = 0.5 \times 109.53 = 54.77 \ \text{N/mm}^2$ Assume an over load of 25%

 $\therefore \text{ Core area of the thread A}_c = \frac{\text{Load to be lifted} \times \text{Load factor}}{\text{Allowable stress}} = \frac{50 \times 10^3 \times 1.25}{109.53} = 570.62 \text{ mm}^2$

Assume the screw to be single start square thread

:. From Table 18.8 (DDHB) for normal series square thread.

Std. core area $A_c = 707 \text{ mm}^2$

Major diameter d = 36 mm

Minor diameter $d_1 = 30 \text{ mm}$

Pitch p = 6mm

Pitch diameter $d_2 = \frac{d + d_1}{2} = \frac{36 + 30}{2} = 33 \text{ mm}$

Major diameter of nut $d_{nut} = 36.5 \text{ mm}$

ii. Check for the screw

Direct compressive stress on the screw $\sigma_c = \frac{W}{A_c} = \frac{50 \times 10^3}{707} = 70.72 \text{ N/mm}^2$

Torsional moment of the screw $M_{ts} = W \left[\frac{d_2}{2} \left(\frac{\tan \alpha + \mu}{1 - \mu \tan \alpha} \right) \right]$ ---- 18.29 (DDHB)

Assuming, Heavy machine oil :: From Table 18.4 (DDHB), $\mu = 0.14$

For single start, lead = pitch $\therefore l = 6 \text{ mm}$

$$\therefore \tan \alpha = \frac{l}{\pi d_2} = \frac{6}{\pi \times 33} = 0.05787$$
 ---- 18.26 (DDHB)

$$\therefore M_{t_s} = 50 \times 10^3 \left[\frac{33}{2} \left(\frac{0.05787 + 0.14}{1 - 0.14 \times 0.05787} \right) \right] = 164576.12 \text{ Nmm}$$

Also
$$M_{t_c} = \frac{\pi}{16} d_1^3 \tau$$

i.e.,
$$164576.12 = \frac{\pi}{16} \times 30^3 \times \tau$$

: Torsional shear stress on the screw $\tau = 31.044 \text{ N/mm}^2$

Maximum principal normal stress
$$\sigma_{\text{max}} = \frac{1}{2} \left[\sigma_c + \sqrt{\sigma_c^2 + 4\tau^2} \right] = \frac{1}{2} \left[70.72 + \sqrt{70.72^2 + 4 \times 31.044^2} \right]$$

= 82.42 N/mm² < 109.53 N/mm²

Maximum shear stress $\tau_{\text{max}} = \frac{1}{2} \left[\sqrt{\sigma_c^2 + 4\tau^2} \right]$

$$= \frac{1}{2} \left[\sqrt{70.72^2 + 4 \times 31.044^2} \right] = 47.05 \text{ N/mm}^2 < 54.77 \text{ N/mm}^2$$

Since the maximum induced normal and shear stress in the screw are less than their permissible values, the design of screw is safe.

iii. Design of screw head or collar (Fig 8.18)

Height of collar $H_1 \approx 1.5d = 1.5 \times 36 = 54$ mm. Outside diameter of collar $d_{e_0} \approx 2d = 2 \times 36 = 72$ mm. Diameter of pin above the head $D = 0.5d = 0.5 \times 36 = 18$ mm.

Assuming uniform pressure condition,

Mean diameter of collar
$$d_c = \frac{2}{3} \left[\frac{d_{c0}^3 - D^3}{d_{c0}^2 - D^2} \right] = \frac{2}{3} \left(\frac{72^3 - 18^3}{72^2 - 18^2} \right) = 50.4 \text{ mm} \approx 51 \text{mm}$$

Assume the collar material as cast iron

From Table 18.5 [Old DDHB ; Table 18.5a (New DDHB)] for hardened steel on C.I, collar friction μ = 0.147

Fig. 8.18

Fig. 8.19

iv. Design of nut (Fig 8.19)

Assume phosphor bronze as nut material. From Table 18.6 (DDHB) Allowable bearing pressure for steel screw and phosphor bronze nut (Jack screw) $\sigma'_b = 10.8$ to 17.2 MPa, take, $\sigma'_b = 14$ MPa

.. Number threads in the nut i =
$$\frac{4W}{\sigma'_b \pi(d^2 - d_1^2)} = \frac{4 \times 50 \times 10^3}{14 \times \pi(36^2 - 30^2)} = 11.48 - 18.40 \text{ (DDHB)}$$

:. Number of threads i = 12

Length of nut $l_{\perp} = i.p = 12 \times 6 = 72$ mm.

Length of screw = Lift + Length of nut + Margin = 300 + 72 + 15 = 387 mm For ductile material $\sigma_{ab} \approx \sigma_{ac}$. Assume FOS = 6 for ultimate strength and FOS = 3.5 for yield strength

$$\sigma_{t_{mat}} = \frac{345}{6} = 57.5 \text{ N/mm}^2$$

$$\sigma_{t_{mat}} = \frac{138}{3.5} = 39.43 \text{ N/mm}^2$$

$$\tau_{mat} = 0.5 \sigma_{t_{mat}} = 0.5 \times 39.43 = 19.715 \text{ N/mm}^2$$
Tearing strength of nut W = $\frac{\pi}{4} \left(D_1^2 - d_{nut}^2 \right) \sigma_{t_{mat}}$

i.e.,
$$50 \times 10^3 = \frac{\pi}{4} (D_1^2 - 36.5^2) \times 39.43$$

 \therefore Outside diameter of nut at the bottom D₁ = 54.28 mm = 55 mm

Crushing strength of nut W =
$$\frac{\pi}{4} (D_2^2 - D_1^2) \sigma_{c_{mut}}$$

i.e., $50 \times 10^3 = \frac{\pi}{4} (D_2^2 - 55^2) \times 57.5$

 \therefore Outside diameter of nut flange at the top $D_2 = 64.28 \text{ mm} = 65 \text{ mm}$ Shearing of nut collar $W = (\pi D_i) H \times \tau_{nut}$

i.e.,
$$50 \times 10^3 = (\pi \times 55) \text{ H} \times 19.715$$

:. Thickness of nut flange H = 14.678 mm = 15 mm

vi. Design of handle or Tommy bar (Fig 8.20)

Total frictional torque
$$M_{t} = M_{t_s} + M_{t_c} = W \left[\frac{d_2}{2} \left(\frac{\tan \alpha + \mu}{1 - \mu \tan \alpha} \right) + \frac{\mu_c d_c}{2} \right] - \cdots 18.29 \text{ (DDHB)}$$

$$= 50 \times 10^{3} \left[\frac{33}{2} \left(\frac{0.05787 + 0.14}{1 - 0.14 \times 0.05787} \right) + \frac{0.147 \times 51}{2} \right] = 352 \times 10^{3} \text{ Nmm}$$

Also
$$M_1 = F \times l_h$$

Assume the force applied on to the handle by a person is 300 N

$$\therefore 352 \times 10^3 = 300 \times l_h$$

: Effective length of handle $l_h = 1173.33 \text{ mm} = 1175 \text{ mm}$

Also
$$M_b = F \times l_h = 352 \times 10^3 \text{ Nmm}$$

We have
$$\frac{M_b}{I} = \frac{\sigma_b}{c}$$
 where $I = \frac{\pi}{64} d_h^4$; $c = \frac{d_h}{2}$

Assume the handle material is C40 steel \therefore $\sigma_b = 109.53 \text{ N/mm}^2$

$$\frac{352 \times 10^{3}}{\frac{\pi}{64} d_{h}^{4}} = \frac{109.53}{\frac{d_{h}}{2}}$$

:. Diameter of handle d_h = 31.98 mm = 32 mm

Diameter of cup at top $D_4 \approx 2d_{e_0} = 2 \times 72 = 144 \text{ mm}$

Height of cup H, ≈ 60 mm Thickness of cup t ≈ 10 mm

viii. Efficiency of the screw

$$\eta = \frac{d_2 \tan \alpha}{\left(\frac{\tan \alpha + \mu}{1 - \mu \tan \alpha}\right) d_2 + \mu_c d_c} \qquad II, = 60 \text{ mm}$$

$$= \frac{33 \times 0.05787}{\left(\frac{0.05787 + 0.14}{1 - 0.14 \times 0.05787}\right) 33 + 0.147 \times 51} = 0.1367 = 13.67\% \qquad Fig. 8.21$$

ix. Check for overhauling

Condition for overhauling is.

tan
$$\alpha \ge \frac{\mu d_2 + \mu_c d_c}{d_2 - \mu \mu_c d_c}$$
 ---- 18.37 (DDHB)
i.e., 0.05787 $\ge \frac{0.14 \times 33 + 0.147 \times 51}{33 - 0.14 \times 0.147 \times 51} \ge 0.3792$

As 0.05787 is less than 0.3792, no overhauling. : It is a self locking screw.

x. Design of body (Fig 8.22)

- Length of screw = Lift + Length of nut + Margin = 300 + 72 + 15 = 387 mm
- Height of body = Length of screw + Clearance = 387 + 50 = 437 mm
- Diameter of body at the top $D_5 \approx 1.5 D_2 = 1.5 \times 65 = 97.5 \text{ mm} \approx 100 \text{ mm}$. (ii)
- Diameter of body at the bottom inside $D_6 = 2.25 D_2 = 2.25 \times 65 = 146.25 \text{ mm} \approx 150 \text{ mm}$ (iii)
- (v) Outside diameter of body at the bottom $D_{\gamma} = 1.5 D_6 = 1.5 \times 150 = 225 \text{ mm}$. (iv)
- Thickness of base $t_1 \approx 2H = 2 \times 15 = 30$ mm. (vi)
- Thickness of body $t_2 \approx 0.25 d = 0.25 \times 36 = 9 mm \approx 10 m$ (vii)

2. Flange coupling

2. Dià of Shaft

$$M_{f} = \frac{\pi}{16} \times \tau_{d} \times d^{3} \times \eta$$

$$119.375 \times 10^{3} = \frac{\pi}{16} \times 93 \times d^{3} \times 0.75$$

d = 20.58 mm

Adopt Standard dia = 22 mm.

Design of hub

= 58mm

```
in of Flange

(i) Outer dia of Flange D = 2.5d+75- 29n 19.13b

= /30mm
5. Design of Flange
     (11) Thickness of Flange t = 0.5d
  Check for Flange
            Mr = + CXD2) Ty D2 (8/19.16)
      119.375 ×103 = 11 (xx58) x 7 x 58
         Gind = 2.053 N/mm2 < 4 N/mm2 Design Safe
     6. Design of bolls
           (1) No: of Bolls i: 0.02d+3
                           1 = 3.445 4 boels
           (ii) Dra q Boel-
                 mt = i { xd1 } } . Th { D1 }
            119.375×103 = 4 { x d1 3 x 93 x { 94 3
     Adopt slandard dia. 3 mm x 0-5-pilch.
     Check for the boll
```

3.

7. Design of key:

For d = 22mm anat books

Key divensions b = 10mm (Tapor key)

R = 8mm

For b = 10mm and h = 8mm, Choose the preferred length

L: 50mm (Choose l > Hableryth)

Check for Shear shrength

The design

Check for Crushing shrength

Check for Crushing shrength

2. To Frid 1, e, Goso	
$C = 160 + 25 = 125m$ $R = \sqrt{25^2 + 35^2} =$	43.0/mm
1 = Jas 738	
Cos 0 = 25 = 0.58	
3. Direct Shear load per un	1- langer of the weld
2 P 3066	12.5 N/ L= 70+70+00 = 240mm
4. Load due to torsiail mo	per unit regic of well.
P. Per -	
ブ	. 3
J: Jw; (b+d)3, (so+n)) - Table /2:3 Dp
J=288000 mn3.	
Pn = 3000 x /25 x 42:01	
2.84000	
5. Repullant load per	unit length of weld
D - [221 D2 4	JP P C. A
PR = 1 82+ PR+	× H. r. wis
P. = 64.015 N/mm	
6. Sage of the weld	
Allowable shear str	in C = PR
γιαστρισ	0.70)WL
	85- = 3000 Pt.021_
	0.70)x Wx1
-> /	v= 1.066 mm y 15mm
-) (V - 1