TURBOMACHINES (18ME54) $IAT-3$ **SOLUTIONS**

Define Suction Head, Delivery Head, Static Head and Manometric Head with a neat diagram for a centrifugal pump.

- (1) Suction Head (hg): It is the vertical height of the centre line of the pump above the water surface in the sump. This height is also called suction lift and is denoted as h5
- (2) Delivery Head (h a) It is the vertical height between the centre line of the pump and the water surface in the tank to which water is delivered. It is denoted as ha

(3) Static Head (H.)

 $\mathbf{1}$

Static headis the vertical distance between the liquid level in the sump and the delivery tank. It is denoted by Hg. Therefore the static head, Hg =hg +hd

Manometric Head (Hm) ± 1 is defined on the head against which a certified eden all losen like Prolional loses, leskage loses, has to work.

If these are no loses in the impeller, then the
manometric head will be equal to the head imparted to the
liquid by the impeller (Euler's Head). liguid

-
=> Hm = Head imparted by impeller
- Head loses in the pump

$$
H_{m} = U_{\mathcal{B}} V_{\omega_{\mathcal{B}}} - H_{\text{rod}} \text{loss}
$$

$$
H_{m} = h_{s} + h_{d} + h_{fs} + h_{fd} + \frac{V_{d}^{2}}{2g}.
$$
\n
$$
h_{R} = f_{rk} \text{ional head loss in suchron pipe.}
$$
\n
$$
h_{fd} = f_{r} \text{richons in delay to deduce price.}
$$
\n
$$
V_{d} = V_{f} \text{loisy of water in delaying pipe.}
$$
\n
$$
H_{m} = \frac{P_{d}}{fg} = \frac{P_{s}}{fg}
$$

Define i) Manometric Efficiency ii) Mechanical Efficiency iii) Voulmetric Efficiency iv) Overall Efficiency for a centrifugal pump

Manometric EPPILIENCY \mathcal{L} The head imparted by the impeller.
The head imparted by the impeller. $\int_{\mathcal{M}}$ = $\frac{m\text{anom}e\text{ln}i\epsilon \text{ln}e\text{d}}{\text{Im}\rho\text{d}\text{ln}r \text{ln}e\text{d}}$ = $\frac{9\text{Hm}}{\text{He}}$ R $He = \mu_0 V_{\omega_0}$. \Rightarrow n_{m} $\frac{H_{m}}{u_{n}v_{m}}$ $\begin{array}{ccc}\n & \text{and} & \text{Hence} & \text{Hence} \\
 & \text{and} & \text{Hence} & \text{Hence} & \text{Hence} \\
 & \text{and} & \text{Hence} & \text{Hence} & \text{Hence} \\
 & \text{and} & \text{Hence} & \text{Hence} & \text{Hence} \\
\end{array}$ \supset 1_m , $\frac{H_m}{H_m H_{0.5}}$ The Course of power octually delivered by the impeller
to the power supplied of the shaft. (i) Mechanical Efficiency Ower supplied or Power.
Jonesh = = shoft Power.

2

$$
l_{mech.}
$$
 = $\frac{v_{B}v_{mB}}{v_{B}v_{mB} + m_{enionial}}$

(iii) Volum etric efficiency (n_{Wd})

3

It is the ratio of amount of water delivered by the delivery pipe to the actual amount of water entering the impeller through suction pipe. Due to leakages, all the water sucked into the impeller does not pass through the delivery pipe. $\mathcal{A}^{(0)}$

$$
\eta_{\text{Vol}} = \frac{\zeta_{\text{S}}}{\zeta_{\text{S}}} = \frac{\zeta_{\text{S}}}{\zeta_{\text{S}} + \zeta_{\text{L}}}
$$
 where $\zeta_{\text{L}} = \text{amount of water leakage.}$

(iv) Overall efficiency (η_0) :- It is the ratio of hydraulic energy output by the pump to the shaft power input to the pump

$$
\begin{aligned}\eta_0=&\frac{gH_m}{U_2V_{u2}}\cdot x\,\frac{U_2V_{u2}}{\text{Input sh aff power}}\cdot x\cdot\frac{Q_d}{Q_2}\,.\end{aligned}
$$
\n
$$
\eta_0=\eta_H\cdot x\cdot \eta_{\text{model}}\cdot x\cdot \eta_{\text{Vol}}
$$

Derive an expression for Work Done for a centrifugal pump by drawing possible velocity triangles for the same

 \sim μ

$$
\frac{w.0}{T_0} = \frac{(u_0 - V_{\beta_0} \omega) \mu_0}{\alpha}
$$
\n
$$
\frac{1}{\alpha_0} = \frac{1}{\alpha_0} \frac{1
$$

Explain minimum starting speed by deriving the expression for the same for a centrifugal pump

4

Minimum Starling Speed When the pump is started, there will be no flow
untill the pressure difference in the impeller is large enough
to overcome the manometric head. This implies that the to overcome the manometric near than the manometric head. The centrifugal head is given by the alternate forms of Euler's equation. Centrifugal head = $\frac{u_0^2 - u_1^2}{2}$ For the flow to commence, $\frac{u_{\mathfrak{g}}^2 - u_{\mathfrak{g}}^2}{\mathfrak{g}} \geq H_m$ So the minimum condition to start the speed is $\frac{u_2^2 - u_1^2}{2}$ = Hm. — \oplus Manometric efficiency, Jm: Hm metric efficiency, $\int_{m} = \frac{Hm}{He}$
 $\Rightarrow Hm: \int_{m} He^{3/2}$ $u_2^2 - u_1^2$ $\left(\frac{\pi N}{60}\right)^2 \frac{(\frac{0^2 - 0^2}{2})}{\pi}$ - 0

$$
\frac{\sinh\sqrt{\sinh\theta}}{\left(\frac{\pi}{60}\right)^{2}} \cdot \frac{(0.8-0.9)}{2} = 0.4
$$
\n
$$
\frac{\left(\frac{\pi}{60}\right)^{2}}{\left(\frac{\pi}{60}\right)^{2}} = \frac{2.04 \text{ Hz}}{0.8-0.8}
$$
\n
$$
\frac{\left(\frac{\pi}{60}\right)^{2}}{\left(\frac{\pi}{60}\right)^{2}} = \frac{2.04 \text{ Hz}}{0.8-0.8}
$$
\n
$$
N^{2} = \frac{60^{2} \times 2.04 \text{ Hz}}{2.00 \times 2.04 \text{ Hz}} = 2.5 \text{ Hz}
$$
\n
$$
N = \frac{120.04 \text{ Hz}}{\pi (0.8-0.8)} \cdot \frac{120.04 \text{ Hz}}{\pi (0.8-0.8)} = 2.5
$$

The velocity of steam at the exit of the nozzle is 440 m/s, which is compounded in an impulse turbine. The tip angles of the moving blades throughout the turbine are 30°. Assume loss of 10% in velocity due to friction when the steam passes over a blade ring. Find the velocity of moving blades in order to have a final discharge of steam as axial. Also determine the diagram efficiency.

Note: As we have to find out the tangential speed of robors for the axial discharge at last row, we have to proceed from the $2nd$ stage by assuming a suitable length for U. We assumed U = 3cm, Finally from Graph we get, $V_1 = 13.6$ cm.

 \therefore V₁ = 440 m/s given) Also, $V_1 = 440 \text{ m/s} = 13.6 \text{ cm}$

:. Scale ratio = 1:32.35 i.e., 1 cm = 32.35 m/s

(i) Tangential velocity of rotor (U)

 \therefore U = 3cm x 32.35 = 97.06 m/s

[CI] [CCI] [HOD]