

Faculty Signature CCI Signature CCI Signature HOD Signature

 \bullet Find $\mathbf{v}_{\,0}(\mathbf{t})$ i.e. response if it is excited by unit step input.

 $\label{eq:1} \mathbf{v}_\mathrm{i}(\mathbf{t}) = \ \mathbf{1},$ $t \geq 0$ $\ddot{}$ $\stackrel{\cdot}{=}\;\;0,$ $\mathfrak{t}<0$

 $V_i(s) = 1/s$ Λ $\overline{}$

 \bullet Now first calculate system T.F. The Laplace network is shown in the Fig. 7.11.1 (b).

• Let input applied $v_i(t)$ is unit step voltage. Substituting

 $V_i(s) = 1/s$ in the transfer function $V_o(s) = \frac{1}{s(1+sRC)} = \frac{A'}{s} + \frac{B'}{1+sRC'}$ $A' = 1$ and $B' = -RC$ $V_o(s) = \frac{1}{s} - \frac{RC}{1 + sRC} = \frac{1}{s} - \frac{1}{s + (1 / RC)}$ Taking Laplace inverse,

 $v_o(t) = 1 - e^{-t/RC} \Rightarrow C_{ss} + c_t(t)$ form $C_{ss} = 1$ and $c_t(t) = e^{-t/RC}$.

7.11.3 Time Constant

ć,

So

. The time constant of a system is defined as the time required by the system output to reach 63.2 % of its final steady state value during first attempt. It is denoted as τ or T.

This response is oscillatory, with oscillating frequency $\omega_n \sqrt{1-\xi^2}$ but decreasing amplitude as it is associated with exponential term with negative index $e^{-\xi \omega_n t}$. Such oscillations are called damped oscillations and frequency of such oscillations is called damped frequency of oscillations ω_d which is nothing but $\omega_n \sqrt{1-\xi^2}$.

 (2)

For underdamped systems, ξ < 1.

 $s^2 + 2\xi \omega_{ni} s + \omega_{ni}^2 = 0$ has two roots, A,

 $ξω_n = α$

$$
s_{1,2} = -\xi \omega_n \pm j \omega_n \sqrt{1 - \xi^2}
$$

Now let

and
$$
\omega_n \sqrt{1-\xi^2} = \omega_d
$$
 (as discussed earlier)

Λ

$$
s_{1,2} = -\alpha \pm j \omega_d
$$

For unit step input $R(s) = 1/s$ and

$$
\frac{C(s)}{R(s)} = \frac{\omega_n^2}{s^2 + 2 \xi \omega_n s + \omega_n^2}
$$

Substituting R(s), C(s) = $\frac{\omega_n^2}{s(s^2 + 2 \xi \omega_n s + \omega_n^2)}$

The partial fraction can be calculated for the Laplace inverse as below,

$$
C(s) = \frac{a_1}{s} + \frac{a_2 s + a_3}{s^2 + 2 \xi \omega_{\pi} s + \omega_{\pi}^2}
$$

$$
\frac{\omega_n^2}{s(s^2 + 2\xi\omega_n s + \omega_n^2)} = \frac{a_1(s^2 + 2\xi\omega_n s + \omega_n^2) * (a_2 s + a_3)}{s(s^2 + 2\xi\omega_n s + \omega_n^2)}
$$

equating numerators on both sides, $\omega_n^2 = s^2(a_1 + a_2) + s(a_1 2\xi\omega_n + a_3) + a_1\omega_n^2$
 \therefore $a_1\omega_n^2 = \omega_n^2$ equating constant
 $a_1 + a_2 = 0$ equating coefficients of s^2
 $a_1 2\xi\omega_n + a_3 = 0$ equating coefficients of s^2
 \therefore $a_1 = 1, a_2 = -1, a_3 = -2\xi\omega_n$
As $\xi\omega_n = \alpha$ assumed earlier for ease of computations.
 \therefore $a_1 = 1, a_2 = -1, a_3 = -2\alpha$
 \therefore $C(s) = \frac{1}{s} + \frac{-s - 2\alpha}{s^2 + 2\alpha s + \omega_n^2}$

 $\frac{s+2\alpha}{s^2+2\alpha s+\omega_n^2}$ $C(s) = \frac{1}{s}$ \mathcal{J}_ℓ

So adjusting denominator as, $s^2 + 2\alpha s + \alpha^2 + \omega_n^2 - \alpha^2 = (s + \alpha)^2 + \omega_n^2 - \alpha^2$

 $\bar{\nu}$

.... (Taking negative sign outside) .

 $\alpha = \xi \omega_n \qquad \therefore \quad \alpha^2 = \xi^2 \; \omega_n^2$ but Substituting in above we get, $(s+\alpha)^2+\omega_n^2-\xi^2$ $\omega_n^2=(s+\alpha)^2+\omega_n^2\left(1-\xi^2\right)$ $\omega_{\rm d} = \omega_{\rm n} \sqrt{1 - \xi^2}$ i.e. $\omega_{\rm d}^2 = \omega_{\rm n}^2 (1 - \xi^2)$ Now

Substituting this in the expression of C(s) we get,

$$
C(s) = \frac{1}{s} - \left\{ \frac{s + 2\alpha}{(s + \alpha)^2 + \omega_d^2} \right\}.
$$

$$
L^{-1} \left\{ \frac{(s + a)}{(s + a)^2 + \omega^2} \right\} = e^{-at} \cos \omega t \text{ and } L^{-1} \left\{ \frac{\omega}{(s + a)^2 + \omega^2} \right\} = e^{-at} \sin \omega t
$$

Adjusting C(s) as,

$$
C(s) = \frac{1}{s} - \left\{ \frac{s + \alpha}{(s + \alpha)^2 + \omega_d^2} + \frac{\alpha}{(s + \alpha)^2 + \omega_d^2} \right\}
$$

Multiplying and dividing by ω_d to the last term,

$$
C(s) = \frac{1}{s} - \left\{ \frac{s + \alpha}{(s + \alpha)^2 + \omega_d^2} + \frac{\alpha}{\omega_d} \cdot \frac{\omega_d}{(s + \alpha)^2 + \omega_d^2} \right\}
$$

Taking Laplace inverse,

$$
c(t) \ = \ 1 - e^{-\alpha \, t} \, \cos \omega_d t - \frac{\alpha}{\omega_d} \ e^{-\alpha \, t} \, \sin \omega_d t
$$

Using
$$
\alpha = \xi \omega_n
$$
, $\omega_d = \omega_n \sqrt{1 - \xi^2}$
\n
$$
c(t) = 1 - e^{-\xi \omega_n t} \left[\cos \omega_d t + \frac{\xi}{\sqrt{1 - \xi^2}} \sin \omega_d t \right]
$$
\n
$$
= 1 - \frac{e^{-\xi \omega_n t}}{\sqrt{1 - \xi^2}} \left[\sqrt{1 - \xi^2} \cos \omega_d t + \xi \sin \omega_d t \right]
$$

• Now, $\sin(\omega_d t + \theta) = \sin(\omega_d t) \cos\theta + \cos(\omega_d t) \sin\theta$ Comparing this with the expression in bracket we can
write $\sin\theta = \sqrt{1 - \xi^2}$ and $\cos\theta = \xi$.

r

Hence
$$
\tan \theta = \frac{\sqrt{1-\xi^2}}{\xi}
$$

$$
\therefore \qquad \theta = \tan^{-1} \frac{\sqrt{1-\xi^2}}{\xi} \qquad \text{radians}
$$

 \bullet Hence using this in the expression. \hfill

$$
\therefore \begin{bmatrix} c(t) = 1 - \frac{e^{-\xi \omega_n t}}{\sqrt{1 - \xi^2}} \sin(\omega_d t + \theta) & \cdots \text{ Required expression} \\ \text{where} & \omega_d = \omega_n \sqrt{1 - \xi^2} \\ \text{and} & \theta = \tan^{-1} \left\{ \frac{\sqrt{1 - \xi^2}}{\xi} \right\} \text{ radians} \end{bmatrix}
$$

Sol. : From given G(s), the closed loop T.F. is,

$$
\frac{C(s)}{R(s)} = \frac{G(s)}{1 + G(s)H(s)} = \frac{10}{s^2 + 2s + 16}
$$

Comparing denominator with $s^2 + 2\xi \omega_n s + \omega_n^2$,

$$
u_{n}^{2} = 16, u_{n} = 4, 25u_{n} = 2, 5 = 0.25
$$

Ì) $= 4$ rad/sec ω_{n}

ii)
$$
\xi =
$$
 Damping ratio = 0.25

iii) %
$$
M_p = e^{-\pi \xi / \sqrt{1 - \xi^2}} \times 100 = 44.43
$$
 %

iv)
$$
\omega_d = \omega_n \sqrt{1 - \xi^2} = 3.873 \text{ rad/sec}
$$

$$
\therefore \qquad T_p = \frac{\pi}{\omega_d} = 0.811 \text{ sec}
$$

$$
v) \tT_s = \frac{4}{\xi \omega_n} = 4 \text{ sec}
$$

$$
4)
$$

Ex. 11.7.2 For a unity feedback system with open loop transfer function:

$$
G(s) = \frac{40(s+5)}{s(s+10)(s+2)}
$$

Draw the Bode plot. Determine gain margin, phase margin, ω_{gc} , ω_{pc} . Comment on the stability of the system.

Sol.: Step 1: Obtain time constant form of G(s)H(s).

$$
G(s)H(s) = \frac{40 \times 5 \left(1 + \frac{s}{5}\right)}{s \times 10 \times 2 \times \left(1 + \frac{s}{10}\right) \left(1 + \frac{s}{2}\right)}
$$

$$
= \frac{10(1 + 0.2s)}{s(1 + 0.1s)(1 + 0.5s)}
$$

Step 2 : Factors

1) $K = 10$, 20 Log $K = 20$ Log $10 = 20$ dB

2) $\frac{1}{s}$, one pole at origin.

Straight line of slope -20 dB/dec passing through intersection of ω =1 and 0 dB.

 $\frac{1}{(1+0.5s)}$, simple pole, T₁ = 0.5, 3) $\omega_{C_1} = \frac{1}{T_1} = 2$ rad/sec

Straight line of slope -20 dB/dec for ω >2.

4) $(1 + 0.2s)$, simple zero, $T_2 = 0.2$, $\omega_{C,2} = \frac{1}{T_2} = 5$ rad/sec.

Straight line of slope +20 dB/dec for ω >5.

 $\frac{1}{(1+0.1s)}$, simple pole, $T_3 = 0.1$, 5) $\omega_{C3} = \frac{1}{T_3} = 10$ rad/sec.

Straight line of slope -20 dB/dec for ω >10.

Resultant slope table :

 $\langle \cdot \rangle_{\mathcal{L}}$

Step 3 : Phase angle table

 $10(1+0.2 \text{ j})$ G(jω)H(jω) = $\frac{10(1-0.1 \text{ m})}{(1+0.1 \text{ m})(1+0.5 \text{ m})}$

 $-tan^{-1}0.5\omega + tan^{-1}0.2\omega - tan^{-1}0.1\omega$ ϕ_R $\frac{1}{10}$ $0.2 - 90^{\circ} - 5.71^{\circ} + 2.29^{\circ}$ -1.14 -94.56 -26.56 ^{*} -139.75 ^{*} $\pmb{5}$ $+45^{\circ}$ $-90°$ -68.19 * -45° $10¹$ -90° -78.69 ? $+83.43^{\circ-}$ -150.25° 50 -90° =87.71°. $+84.29$ -78.69 -172.119 -90° -90° -90° $+90^{\circ}$ -50° -180°

Step 4 : The Bode plot is shown in the Fig. 11.7.2. From the plot, \sim $\mathcal{F}_{\mathcal{P}_{\mathcal{C}}}$

 $\omega_{\rm gc} = 4.4$ rad/sec, $\omega_{\rm pc} = \infty$ G.M. = + ∞ dB P.M. = +42 $^{\circ}$ As $GM. = +\infty$ dB, the system is absolutely stable in naturė.

