USN:								CAR INSTITUTE OF TECHNOL	MRIT	J.
			Inte	rnal Assessment	Test 3	–Jan. 2022				
Sub:	Control Engine	ering				Sub Code:	18ME71/17ME73/ 15ME73	Branch:	ME	
Date:	24.01.22	24.01.22 Duration: 90 mins Max Marks: 50 Sem/Sec: VII/A&B							OBE	
			Answer A	II the Questions				MARKS	CO	RBT
1	fea	atures. (6 M	1)	response for a (ii) Damped fr		•	em and explain its	10	СОЗ	L3/L2
2	Derive the ex	pression for	unit step r	esponse of un	derda	mped seco	ond order system.	10	СОЗ	L3
3	If the system	is subjected	G(s) I to unit ste	rized by an operation $= \frac{10}{s^2 + 2s}$ p input, determinant overshoot (in	- 6 mine	(i) Undam	ped natural	10	CO3	L3
4	frequency (ii) Damping Ratio (iii) Peak overshoot (iv) Peak time (v) Settling time. Sketch the Bode plot for a unity feedback system whose open loop transfer function is given by $G(s) = \frac{10}{s(1+s)(1+0.02s)}$ Determine: (i) Gain and Phase crossover frequencies (ii) Gain and Phase Margin (iii) Stability of the control system.				20	CO5	L3			

Faculty Signature

CCI Signature

HOD Signature

 \bullet Find $\mathbf{v}_{\sigma}(t)$ i.e. response if it is excited by unit step input.

$$v_i(t) = 1,$$
 $t \ge 0$
= 0, $t < 0$

 Now first calculate system T.F. The Laplace network is shown in the Fig. 7.11.1 (b).

Fig. 7.11.1 (b)

$$V_i(s) = I(s) R + \frac{1}{sC}I(s)$$
 ... (7.11.1)

$$V_o(s) = \frac{1}{sC}I(s)$$
 ... (7.11.2)

$$\frac{V_o(s)}{V_i(s)} = \frac{1}{1 + sRC} = \frac{1}{1 + Ts} \quad \text{where } T = RC$$

 \bullet Let input applied $v_i(t)$ is unit step voltage. Substituting

Vi(s) = 1/s in the transfer function

$$V_o(s) = \frac{1}{s(1+sRC)} = \frac{A'}{s} + \frac{B'}{1+sRC'}$$

$$A' = 1$$
 and $B' = -RC$

$$V_o(s) = \frac{1}{s} - \frac{RC}{1 + sRC} = \frac{1}{s} - \frac{1}{s + (1/RC)}$$

Taking Laplace inverse,

$$v_o(t) = 1 - e^{-t/RC} \Rightarrow C_{ss} + c_t(t)$$
 form

So $C_{ss} = 1$ and $c_t(t) = e^{-t/RC}$.

7.11.3 Time Constant

 The time constant of a system is defined as the time required by the system output to reach 63.2 % of its final steady state value during first attempt. It is denoted as τ or T.

This response is oscillatory, with oscillating frequency $\omega_n \sqrt{1-\xi^2}$ but decreasing amplitude as it is associated with exponential term with negative index $e^{-\xi \, \omega_n \, t}$. Such oscillations are called damped oscillations and frequency of such oscillations is called damped frequency of oscillations ω_d which is nothing but $\omega_n \, \sqrt{1-\xi^2}$.

2)

For underdamped systems, $\xi < 1$.

$$s^2 + 2\xi \omega_n s + \omega_n^2 = 0$$
 has two roots,
 $s_{1,2} = -\xi \omega_n \pm j \omega_n \sqrt{1-\xi^2}$

Now let

$$\xi \omega_n = \alpha$$

and

٨.

$$\omega_n \sqrt{1-\xi^2} = \omega_d$$
 (as discussed earlier)

$$s_{1,2} = -\alpha \pm j\omega_d$$

For unit step input R(s) = 1/s and

$$\frac{C(s)}{R(s)} = \frac{\omega_n^2}{s^2 + 2 \xi \omega_n s + \omega_n^2}$$

Substituting R(s), C(s) =
$$\frac{\omega_n^2}{s(s^2 + 2 \xi \omega_n \ s + \omega_n^2)}$$

The partial fraction can be calculated for the Laplace inverse as below,

$$C(s) = \frac{a_1}{s} + \frac{a_2 s + a_3}{s^2 + 2 \xi \omega_n s + \omega_n^2}$$

$$\frac{\omega_n^2}{s(s^2 + 2\xi\omega_n s + \omega_n^2)} = \frac{a_1(s^2 + 2\xi\omega_n s + \omega_n^2) + s(a_2 s + a_3)}{s(s^2 + 2\xi\omega_n s + \omega_n^2)}$$

equating numerators on both sides. $\omega_0^2 = s^2(a_1 + a_2) + s(a_1 2\xi\omega_0 + a_2) + a_1\omega_0^2$

$$a_1\omega_n^2 = \omega_n^2$$

equating constant

equating coefficients of s2

equating coefficients of s

$$a_1 = 1$$
, $a_2 = -1$, $a_3 = -2\xi \omega_n$

As = a assumed earlier for ease of computations

$$a_1 = 1$$
, $a_2 = -1$, $a_3 = -2\alpha$

$$C(s) = \frac{1}{s} + \frac{-s - 2\alpha}{s^2 + 2\alpha s + \alpha^2}$$

$$C(s) = \frac{1}{s} - \left\{ \frac{s + 2\alpha}{s^2 + 2\alpha s + \omega_n^2} \right\}$$

.... (Taking negative sign outside) ...

So adjusting denominator as, $s^2 + 2\alpha s + \alpha^2 + \omega_n^2 - \alpha^2 = (s + \alpha)^2 + \omega_n^2 - \alpha^2$

but

$$\alpha = \xi \omega_n$$
 \therefore $\alpha^2 = \xi^2 \omega_n^2$

Substituting in above we get, $(s + \alpha)^2 + \omega_n^2 - \xi^2 \omega_n^2 = (s + \alpha)^2 + \omega_n^2 (1 - \xi^2)$

Now

$$\omega_d = \omega_n \sqrt{1-\xi^2}$$
 i.e. $\omega_d^2 = \omega_n^2 (1-\xi^2)$

Substituting this in the expression of C(s) we get,

$$C(s) = \frac{1}{s} - \left\{ \frac{s + 2\alpha}{(s + \alpha)^2 + \omega_d^2} \right\}$$

$$L^{-1}\left\{\frac{(s+a)}{(s+a)^2+\omega^2}\right\} = e^{-at}\cos\omega t \quad \text{and} \quad L^{-1}\left\{\frac{\omega}{(s+a)^2+\omega^2}\right\} = e^{-at}\sin\omega t$$

Adjusting C(s) as,

$$C(s) = \frac{1}{s} - \left\{ \frac{s + \alpha}{(s + \alpha)^2 + \omega_A^2} + \frac{\alpha}{(s + \alpha)^2 + \omega_A^2} \right\}$$

' Multiplying and dividing by ω_d to the last term,

$$C(s) \ = \ \frac{1}{s} - \left\{ \frac{s + \alpha}{(s + \alpha)^2 + \omega_d^2} + \frac{\alpha}{\omega_d} \cdot \frac{\omega_d}{(s + \alpha)^2 + \omega_d^2} \right\}$$

Taking Laplace inverse,

$$c(t) = 1 - e^{-\alpha t} \cos \omega_d t - \frac{\alpha}{\omega_d} e^{-\alpha t} \sin \omega_d t$$

Using

$$x = \xi \omega_n$$

$$\alpha = \xi \omega_n$$
, $\omega_d = \omega_n \sqrt{1 - \xi^2}$

$$c(t) = 1 - e^{-\xi \, \omega_n t} \, \left[\cos \omega_d \, t + \frac{\xi}{\sqrt{1 - \xi^2}} \, \sin \omega_d \, t \, \right] \label{eq:ct}$$

$$=1\,-\,\frac{e^{\,-\,\xi\,\omega_{n}\,t}}{\sqrt{1-\xi^{2}}}\,\,\left[\sqrt{1-\xi^{2}}\,\,\cos\,\omega_{d}\,t+\xi\sin\,\omega_{d}\,t\,\right]$$

• Now, $\sin (\omega_d t + \theta) = \sin(\omega_d t) \cos\theta + \cos (\omega_d t) \sin\theta$ Comparing this with the expression in bracket we can write $\sin\theta=\sqrt{1-\xi^2}$ and $\cos\theta=\xi$.

Hence

$$\tan \theta = \frac{\sqrt{1-\xi^2}}{\xi}$$

$$\theta = \tan^{-1} \frac{\sqrt{1-\xi^2}}{\xi}$$
 radians

· Hence using this in the expression.

$$c(t) = 1 - \frac{e^{-\frac{t}{2}\omega_n t}}{\sqrt{1 - \xi^2}} \sin(\omega_d t + \theta)$$

where

$$\omega_{\rm d} = \omega_{\rm n} \sqrt{1-\xi^2}$$

$$\theta = \tan^{-1} \left\{ \frac{\sqrt{1-\xi^2}}{\xi} \right\} \text{ radians}$$

Sol.: From given G(s), the closed loop T.F. is,

$$\frac{C(s)}{R(s)} = \frac{G(s)}{1 + G(s)H(s)} = \frac{10}{s^2 + 2s + 16}$$

Comparing denominator with $s^2 + 2\xi \omega_n s + \omega_n^2$,

$$\omega_n^2 = 16$$
, $\omega_n = 4$, $2\xi\omega_n = 2$, $\xi = 0.25$

i)
$$\omega_{\alpha} = 4 \text{ rad/sec}$$

iii) %
$$M_p = e^{-\pi \xi / \sqrt{1-\xi^2}} \times 100 = 44.43 \%$$

iv)
$$\omega_d = \omega_n \sqrt{1-\xi^2} = 3.873 \text{ rad/sec}$$

$$T_p = \frac{\pi}{\omega_d} = 0.811 \text{ sec}$$

$$T_{\rm g} = \frac{4}{\xi \omega_{\rm n}} = 4 \, {\rm sec}$$

4)

Ex. 11.7.2 For a unity feedback system with open loop transfer function:

$$G(s) = \frac{40(s+5)}{s(s+10)(s+2)}$$

Draw the Bode plot. Determine gain margin, phase margin, ω_{gc} , ω_{pc} . Comment on the stability of the system.

Sol.: Step 1: Obtain time constant form of G(s)H(s).

$$G(s)H(s) = \frac{40 \times 5 \left(1 + \frac{s}{5}\right)}{s \times 10 \times 2 \times \left(1 + \frac{s}{10}\right) \left(1 + \frac{s}{2}\right)}$$
$$= \frac{10(1 + 0.2s)}{s(1 + 0.1s)(1 + 0.5s)}$$

Step 2 : Factors

1) K = 10, 20 Log K = 20 Log 10 = 20 dB

2) $\frac{1}{s}$, one pole at origin.

Straight line of slope -20 dB/dec passing through intersection of $\omega=1$ and 0 dB.

3)
$$\frac{1}{(1+0.5s)}$$
, simple pole, $T_1 = 0.5$,
 $\omega_{C.1} = \frac{1}{T_1} = 2 \text{ rad/sec}$

Straight line of slope -20 dB/dec for ω>2.

4)
$$(1 + 0.2s)$$
, simple zero, $T_2 = 0.2$, $\omega_{C,2} = \frac{1}{T_2} = 5$ rad/sec.

Straight line of slope +20 dB/dec for $\omega > 5$.

5)
$$\frac{1}{(1+0.1s)}$$
, simple pole, $T_3 = 0.1$, $\omega_{C3} = \frac{1}{T_3} = 10$ rad/sec.

Straight line of slope -20 dB/dec for ω>10.

Resultant slope table :

Range of w	Resultant slope,
$0 < \omega < \omega_{C1}(2)$	- 20 dB/dec (Pole at origin)
2 < ω < ω _{C2} (5) -	- 20 - 20 = - 40 dB/dec
5<ω<ω _{C3} (10)	- 40 + 20 = 20 dB/dec ·
10<ω<∞	- 20 - 20 = - 40 dB/dec

Step 3 : Phase angle table

$$G(j\omega)H(j\omega) = \frac{10(1+0.2 j\omega)}{j\omega(1+0.1 j\omega)(1+0.5 j\omega)}$$

ω	, <u>1</u> ju	–tan ^{–1} 0.5 ₀	+tan ⁻¹ 0.2ω	– tan ^{–1} 0.1ω	φR
0.2	-90°	-5.71°	+2.29°	-1.149-	-94.56°
5	-90°	-68.19°	+45°	-26.56°	-139.75
10	-90°	-78.691	+63.43°	-45°	-150.25°
50	-90°	-87.71°.	+84.29**	-78.69	-172.119
90	-90°	-90°	+90°	-90°	-1809

Step 4: The Bode plot is shown in the Fig. 11.7.2. From the plot,

 ω_{gc} = 4.4 rad/sec, ω_{pc} = ∞ , G.M. = + ∞ dB P.M. = +42° As G.M. = + ∞ dB, the system is absolutely stable in nature.

