

Internal Assesment Test - I

Sub:	ANALOG ELECTRONIC CIRCUITS							Code:		18EE34	
Date:	17/12/2021	Duration:	90 mins	Max Marks:	50	Sem:	3rd	Branch:		EEE	
Answer Any FIVE FULL Questions											
								Marks	OBE		
										CO	RBT
	For Emitter Stabilit $R_B = 100 \text{k}\Omega$, $\beta = 100$	zed Bias c . Calculate I	ircuit V_{CB} , I_{C} , V_{CE}	$c_{\rm C} = 10 \text{V}, \text{ R}$ $c_{\rm C}, \text{V}_{\rm E} \text{ and } \text{V}_{\rm C}.$. _C = 1	kΩ, R _i	E = :	500Ω,	10	CO1	L3
1	Design a Voltage I $S_{ICO} = 20, \beta = 100, V$			_	n cond	itions.	$I_c =$	1mA,	, 10	CO1	L3
3	Derive the expression for stability factor $S(I_{CO})$ and $S(V_{BE})$ for Emitter Bias configuration								10	CO1	L3
4 J	Determine the stability factor $S(V_{BE})$ and the change in I_C from $25^{\circ}C$ to $100^{\circ}C$ for the transistor with $V_{BE}(25^{\circ}C) = 0.65V$ and $V_{BE}(100^{\circ}C) = 0.48V$ for the following bias arrangements										
	a) Fixed Bias with $R_B = 270k\Omega$ and $\beta = 120$										
	b) Voltage Divider Bias with $R_1 = 39k\Omega$, $R_2 = 10k\Omega$, $R_E = 1k\Omega$ and $\beta = 120$										
	Derive the expression for stability factor $S(I_{CO})$, $S(V_{BE})$ and $S(\beta)$ for Fixed Bia configuration								10	CO1	L3
	9	= 200 and	$V_{CE(sat)}$ R_{B}	$= 0V. \text{ Also}$ R_C	draw t	the out	put v	oltage		CO1	L3
7	What is Clamping of	rircuits? Dra	w the circ	uit and output	wavefo	orms for	r Nega	ative	10	CO1	L1
	Clamper and Positive	Clamper.									

1.

2.

$$\frac{T_{B}}{A_{B}} = \frac{V_{CC} - V_{BE}}{A_{B} + (I+B)R_{E}} = \frac{I_{OV-O.7V}}{I_{OORJL} + (IUI)S_{OOJL}} = \frac{9.3}{I_{SO.5}} = 0.062 \text{ and}$$

$$T_{C} = P_{B} = I_{OOX} 0.062 = 6.2 \text{ mA}$$

$$V_{CE} = V_{CC} - I_{C} \left(R_{C} + R_{E}\right)$$

$$= I_{O} - 6.2 \left(I + S_{OUJL}\right) = 0.7 \text{ V}$$

$$V_{E} = I_{E}R_{E} = 6.2 \times S_{OU-2} = 3.1 \text{ V}$$

$$V_{C} = V_{CC} - I_{C}R_{C} = I_{O} - 6.2 \times (I) = 3.8 \text{ V}$$

$$I_{C} \simeq I_{E} = I_{MA}$$

$$V_{E} = I_{E}R_{E} \Rightarrow R_{E} = V_{E}$$

$$I_{B} = I_{C}$$

$$I_{B} = I_{C}$$

$$I_{C} = V_{CC} - V_{CE}$$

$$I_{C} = V_{CC} - V_{CE}$$

$$I_{C} = I_{C}R_{E} + R_{TL}$$

$$V_{Th} = R_{Th} I_{B} + I_{ERE} + V_{BE}$$

$$= (23.691 \times 0^{2.001}) + (1 \times 1) + 0.7$$

$$= 1.937 V$$

$$V_{Th} = V_{CC} \frac{R_{2}}{R_{1} + R_{2}}$$

$$V_{Th} = \frac{V_{CC}}{R_{1}} \frac{R_{1}R_{2}}{(R_{1} + R_{2})} = \frac{V_{CC}}{R_{1}} R_{Th}$$

$$R_{1} = \frac{V_{CC}}{V_{Th}} R_{Th} = \frac{12}{1.937} \times 23.691 = 146.769 \text{ KD}$$

$$R_{1} = R_{1} | R_{2} \Rightarrow \frac{1}{A_{Th}} = \frac{1}{R_{1}} + \frac{1}{A_{2}}$$

$$R_{1} = R_{1} | R_{2} \Rightarrow \frac{1}{A_{Th}} = \frac{1}{R_{1}} + \frac{1}{R_{2}}$$

$$R_{2} = \frac{1}{R_{1}} - \frac{1}{R_{1}} = \frac{R_{1} - R_{Th}}{R_{1} - R_{Th}}$$

$$R_{2} = \frac{1}{R_{1} - R_{Th}} = \frac{147 \times 23.691}{147 - 623.691}$$

$$= 28.24.3 \text{ KPL}$$

Stability Factor S(I_{CO}),

3.

$$S(I_{CO}) = \frac{1+\beta}{1-\beta \frac{\partial I_B}{\partial I_C}}$$

$$V_{CC} = I_B R_B + V_{BE} + I_E R_E$$
But
$$I_E = I_B + I_C$$

$$\therefore V_{CC} = I_R R_B + V_{BE} + I_R R_E + I_C R_E$$

Differentiating with respect to I_C keeping V_{BE} constant, we get

entiating with respect to
$$I_C$$
 keeping V_{BE} constant, we get
$$0 = \frac{\partial I_B}{\partial I_C} R_B + \frac{\partial I_B}{\partial I_C} R_E + R_E = \frac{\partial I_B}{\partial I_C} (R_B + R_E) + R_E$$

$$\therefore \frac{\partial I_B}{\partial I_C} = -\frac{R_E}{R_B + R_E}$$

$$S(I_{CO}) = \frac{(\beta + 1)(1 + \frac{R_B}{R_E})}{(\beta + 1) + \frac{R_B}{R_E}}$$

$$S(I_{CO}) = \frac{1+\beta}{1-\beta\left(\frac{-R_E}{R_B + R_E}\right)} = \frac{1+\beta}{1+\beta\left(\frac{R_E}{R_B + R_E}\right)}$$

$$= \frac{(\beta+1)(R_E + R_B)}{R_B + R_E + \beta R_E} = \frac{(\beta+1)(R_E + R_B)}{(\beta+1)R_E + R_B}$$

$$S(I_{CO}) = \frac{(\beta+1)\left(1+\frac{R_B}{R_E}\right)}{(\beta+1)+\frac{R_B}{R_E}}$$

Stability Factor S(V_{BE})

$$S(V_{BE}) = \frac{\partial I_{C}}{\partial V_{BE}}$$

$$V_{CC} = I_{B}R_{B} + V_{BE} + I_{B}R_{E} + I_{C}R_{E}$$
Substituting
$$I_{B} = \frac{I_{C}}{\beta}$$

$$V_{CC} = \frac{I_{C}}{\beta}R_{B} + V_{BE} + \frac{I_{C}}{\beta}R_{E} + I_{C}R_{E}$$

$$= \left[\frac{R_{B}}{\beta} + \frac{R_{E}}{\beta} + R_{E}\right]I_{C} + V_{BE}$$

$$= \left[\frac{R_{B} + R_{E} + \beta R_{E}}{\beta}\right]I_{C} + V_{BE}$$

$$V_{CC} = \left[\frac{R_{B} + (1 + \beta)R_{E}}{\beta}\right]I_{C} + V_{BE}$$

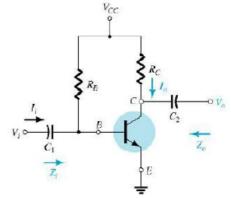
Differentiating with respect to I_C , keeping β constant, we get

$$0 = \frac{R_B + (1+\beta)R_E}{\beta} + \frac{\partial V_{BE}}{\partial I_C}$$

$$\therefore S(V_{BE}) = \frac{\partial I_C}{\partial V_{BE}} = \frac{-\beta}{R_B + (1+\beta)R_E}$$

4. a) dVBE = VBE (100°C) - VBE (25°C) = -0-17V. SUBE = - B = -0.44 ×103.

RTh = R1/1/R2 = 7-95KN.


4.

Stability Factor S(I_{CO}),

 $S(I_{CO})$ or $S = \frac{\partial I_C}{\partial I_{CBO}}$ at constant V_{BE} and β

From circuit diagram

$$I_{B} = \frac{V_{CC} - V_{BE}}{R_{B}}$$

$$V_{CC} \gg V_{BE}$$

$$I_B \simeq \frac{V_{CC}}{R_B} \quad \text{which is constant}$$

Differentiating with respect to I_C,

$$\frac{\partial I_B}{\partial I_C} = 0$$

Substitute in equation A,

$$S(I_{co}) = 1 + \beta$$

Stability Factor S(V_{BE})

$$S(V_{BE}) \equiv \frac{\partial I_{C}}{\partial V_{BE}}$$

$$V_{CC} = I_{B}R_{B} + V_{BE}$$

$$V_{BE} = V_{CC} - I_{B}R_{B}$$
But
$$I_{B} \simeq \frac{I_{C}}{\beta}$$

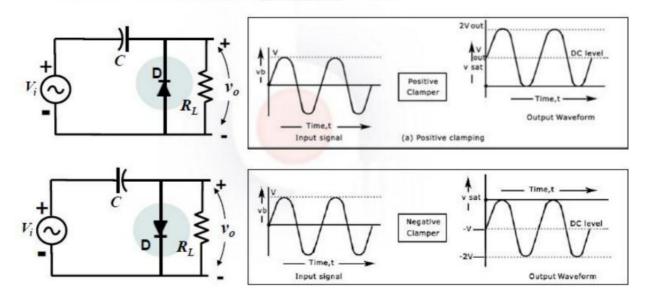
$$V_{BE} = V_{CC} - \frac{I_{C}}{\beta}R_{B}$$

Differentiating with respect to V_{BE} , keeping β constant, we get

$$1 = 0 - \frac{R_B}{\beta} \frac{\partial I_C}{\partial V_{BE}}$$

$$S(V_{BE}) = -\frac{\beta}{R_B}$$

6.


Solution To find R_{c} , $I_{c}(x) = \frac{V_{(c)} - V_{(E(Sak))}}{R_{c}}$ $\frac{Q_{c} = V_{(C)} - 12V - 1KN}{I_{c}(Sak)}$ $\frac{I_{c}(Sak)}{I_{c}(Sak)} = \frac{12mA}{I_{c}(Sak)} = \frac{12mA}{I_{c}(Sak)}$ $\frac{I_{c}(Sak)}{I_{c}(Sak)} = \frac{12mA}{I_{c}(Sak)} = \frac{12mA}{I_{c}(Sak)} = \frac{12mA}{I_{c}(Sak)}$

Let IB = 150/1 of IR (max) to ensure saturation]
=1-5 (60MA) = 90MA.

: RB = V; -VRF = 12V-0.70 = 125.55KR.

IB = 90MA

- A clamping circuit is a circuit that shifts an AC waveform (up or down) to a different DC level.
- · Also known as a level shifter.
- The input and output waveforms have identical shapes, only the DC level is different.

