

CMR INSTITUTE OF **TECHNOLOGY**

Internal Assesment Test – I –Scheme and Solution

rse Recovery time t_{rr}
 Reverse Current I_{RR}
 $I_{RR} = t_a \frac{di}{dt}$

rse Recovery Charge Q₀₀
 $I_1 + Q_2 \approx \frac{1}{2} I_{RR} t_a + \frac{1}{2} I_{RR} t_b = \frac{1}{2} I_{RR} t_r$ Be Recovery time t_{rr}

Reverse Current I_{RR}
 $R_R = t_a \frac{di}{dt}$

Re Recovery Charge Q₀₀ is exercise Current I_{RA}
 $\frac{d\vec{a}}{dt}$
 $\frac{d\vec{a}}{dt}$
 $\frac{d\vec{a}}{dt}$
 $\frac{d\vec{a}}{dt}$
 $\frac{d\vec{b}}{dt}$ Recovery time t_n
 $=t_a \frac{d}{dt}$
 $=t_a \frac{d}{dt}$

Recovery Charge Q_0 ,
 $Q_2 \approx \frac{1}{2} I_R h^l \frac{1}{2} I_R h^l b = \frac{1}{2} I_R h^l \frac{1}{2} I_R h^l$

Recovery Charge Q_{8R} is the amount charge *reading*
 r $I_{RR} = t_a \frac{dI}{dt}$
 I_{RR} = $t_a \frac{dI}{dt}$
 PRR = $\frac{1}{2} I_{RR} t_a + \frac{1}{2} I_{RR} t_b = \frac{1}{2} I_{RR} t_m$ or $I_{RR} = \frac{2Q_{RR}}{t_m}$

deverse Recovery Charge $Q_{\alpha R}$ is the amount charge carrier

covers a reading condi Recovery time t_r
 $=t_a \frac{d}{dt}$
 $= t_a \frac{d}{dt}$

Recovery Charge Q_{so}
 $Q_2 \approx \frac{1}{2} I_R R I_a + \frac{1}{2} I_R R I_b = \frac{1}{2} I_R R I_r$ or $I_{RR} \approx \frac{2Q_{RR}}{I_r}$

Recovery Charge Q_{sR} is the amount charge carriers that

in forward conduction se Recovery time t_{in}

t_{he} exercise Current I_{ss}
 $g_{\text{M}x} = t_a \frac{d}{dt}$

se Recovery Charge Q_{so}
 $+ Q_2 \approx \frac{1}{2} J_{R} g t_a + \frac{1}{2} J_{R} g t_b = \frac{1}{2} J_{R} g t_r$ or $J_{M} \approx \frac{2Q_{Mx}}{t_H}$

se Recovery Charge Q_{so} is the amount • Reverse Recovery time t_{rr} $t_a + t_b$
 $I_{RR} = t_a \frac{d}{dt}$

everse Recovery Charge Q_{so}
 $Q_1 + Q_2 \approx \frac{1}{2} I_{RR} I_a + \frac{1}{2} I_{RR} I_b = \frac{1}{2} I_{RR} I_m$ or $I_{RR} \approx \frac{2Q_{RR}}{t_m}$

everse Recovery Charge Q_{sp} is the amount charge carriers that

over from forward con $t_{rr} = t_a + t_b$ erse Current I_{RR}
 $=t_a \frac{d\vec{l}}{dt}$

tecovery Charge Q_{oo}
 $Q_2 \approx \frac{1}{2} I_{RR} t_a + \frac{1}{2} I_{RR} t_b = \frac{1}{2} I_{RR} t_r$ or

Recovery Charge Q_{RR} is the amount toss the diode in the reverse direct

forward conduction to reverse bloc 3 • Peak Reverse Current I_{RR} $I_{RR} = t_a \frac{du}{dt}$

teverse Recovery Charge Q_{ss}
 $= Q_1 + Q_2 \approx \frac{1}{2} I_{RR} t_a + \frac{1}{2} I_{RR} t_b = \frac{1}{2} I_{Rl}$

teverse Recovery Charge Q_{RR} is the

tows across the diode in the rever

so value is determined from the area en

so $=t_a \frac{du}{dt}$ *Recovery Charge Q_{oo}*
 $Q_1 + Q_2 \approx \frac{1}{2} I_{RR} I_a + \frac{1}{2} I_{RR} I_b = \frac{1}{2} I_{RR} I_m$ or $I_{RR} \approx \frac{2Q_{RR}}{I_m}$
 Reference Recovery Charge Q_{RR} is the amount charge carrier from forward conduction to reverse direction due to clar • Reverse Recovery Charge Q_{op} *Reading* $Q_1 + Q_2 \approx \frac{1}{2} I_{RR} t_a + \frac{1}{2} I_{RR} t_b = \frac{1}{2} I_{RR} t_m$ or I_h
 Reading a across the diode in the reverse direction
 RR a different of the area enclosed by the sovery current.
 PRR $= \frac{1}{2} I_{RR} t_a + \frac{1}{2} I_{RR$ \checkmark Reverse Recovery Charge Q_{RR} is the amount charge carriers that flows across the diode in the reverse direction due to change over from forward conduction to reverse blocking condition. \checkmark Its value is determined from the area enclosed by the curve of the reverse recovery current. $2Q_{RR}$ \overline{di} Q_{RR} $=\frac{2Q_{RR}}{r}$ $Q_{\!R\!R}$ *dt* $t_{\rm b}$ is negligible compared to $t_{\rm a}$, $t_{\rm r} = \frac{t_{\rm c} - t_{\rm c}}{d\theta/dt}$ t_a $I_{RR} = \sqrt{2Q_{RR} \frac{di}{dt}}$ 2b The reverse recovery time of a diode is 5 μ s and rate of fall of the diode current is $\begin{vmatrix} 3 & 1 \\ 0 & 3 \end{vmatrix}$ 3 CO1 L380A/ μ s. Determine (i) Storage charge Q_{RR} (ii) Peak reverse current I_{RR} Given Data 1 Reverse recovery time of a diode trr $= 5\mu s$ Rate of fall of the diode current di/dt = $80A$ / μ s **1. To find QRR** 1 $Q_{RR} = \frac{1}{2} \frac{di}{dt} t_n^2$ $QRR = \frac{1}{2} \frac{80}{10^{-6}} (5 * 10^{-6})^2 = 1000 \text{ }\mu\text{c}$

Mode 1

• Diode current i1

$$
i_1(t) = \frac{V_s}{R} \left(1 - e^{-tR/L} \right)
$$

- When the switch is opened at *t* = *t*1 (at the end of this mode),
- Diode current i1 at *t* = *t*1 becomes

$$
I_1 = i_1(t = t_1) = \frac{V_s}{R} (1 - e^{-tR/L})
$$

• If the time *t*1 is sufficiently long, the current practically reaches a steady-state current of *Is* = *Vs*/*R* flows through the load.

Mode 2

• This mode begins when the switch is opened and the load current starts to flow through the freewheeling diode *Dm*.

• Redefining the time origin at the beginning of this mode, the state of the s mode, the current through the freewheeling diode $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ is found f $\frac{a_1}{b_1} - \frac{a_2}{b_1} + b_1$.

- with initial condition $i2(t = t1) = 11$.
- *the freew* $i_2(t) = I_1 e^{-tR/L}$ *i2 is given by*
- at *t = t2 this current decays exponentially to practically zero provided that t2 > L/R.*

 $i₂$

Mode 2

2

2

Performance Parameters for Full wave Rectifier

1. Average value of the output voltage, Vdc

$$
V_{\text{dc}} = \frac{2}{T} \int_0^{T/2} V_m \sin \omega t \, dt \qquad T = 2 \pi
$$

$$
V_{dc} = \frac{1}{\pi} \int_0^{\pi} V_m \sin \omega t \, d\omega t
$$

$$
= \frac{V_m}{\pi} \left(-\cos \omega t \right)_0^{\pi}
$$

$$
= \frac{V_m}{\pi} \left(-\cos \pi + \cos 0^\circ \right)
$$

$$
V_{dc} = \frac{2V_m}{\pi} = 0.6366 V_m
$$

2. Average value of the output current (Load), Idc

1

$$
I_{\rm dc} = \frac{V_{\rm dc}}{R} = \frac{0.6366 V_m}{R}
$$

3. Output dc power, Pdc

$$
\mathbf{P}_{\mathbf{dc}} = \mathbf{V}_{\mathbf{dc}} \mathbf{I}_{\mathbf{dc}}
$$

$$
P_{\rm dc} = (0.6366 V_m)^2 / R
$$

4. RMS value of the output voltage, Vrms

$$
V_{\rm rms} = \left[\frac{2}{T}\int_0^{T/2} (V_m \sin \omega t)^2 dt\right]^{1/2}
$$

 $T = 2 \pi$

The rms value of the load voltage V_{rms} can be calculated as follows:

$$
V_{rms} = \sqrt{\frac{1}{\pi} \int_0^{\pi} v_s^2 (\omega t) d\omega t}
$$

=
$$
\sqrt{\frac{1}{\pi} \int_0^{\pi} (V_m \sin \omega t)^2 d\omega t}
$$

=
$$
\sqrt{\frac{(V_m)^2}{\pi} \int_0^{\pi} \frac{1}{2} (1 - \cos 2\omega t) d\omega t} = \frac{V_m}{\sqrt{2}}
$$

$$
V_{rms} = \frac{V_m}{\sqrt{2}} = 0.707 V_m
$$

5. RMS value of the output Current, I rms

$$
I_{\rm rms} = \frac{V_{\rm rms}}{R} = \frac{0.707 V_m}{R}
$$

6. Output ac power, Pac

 $P_{ac} = V_{rms}I_{rms}$

$$
P_{\rm ac} = (0.707 V_m)^2 / R.
$$

Schottky Diodes
• The charge storage problem of a *pn*-junction can be eliminated (or minimized) in a Schottky diode. It is accomplished by setting up a "barrier potential" with a contact between a metal and a semiconductor. • A layer of metal is deposited on a thin epitaxial layer of *n*-type silicon. The rectifying action depends on the majority carriers only, and as a result there are no excess minority carriers to recombine. • The recovery effect is due to the **self capacitance of the semiconductor junction.** • The recovered charge of a Schottky diode is much less than that of an equivalent *pn* junction diode. Because it is due only to the junction capacitance, it is largely independent of the reverse *di/dt*. • A Schottky diode has a relatively low forward voltage drop. The leakage current of a Schottky diode is higher than that of a *pn*-junction diode. • A Schottky diode with relatively low-conduction voltage has relatively high leakage current, and vice versa. As a result, the maximum allowable voltage of this diode is generally limited to 100 V. The current ratings of Schottky diodes vary from 1 to 400 A. The Schottky diodes are ideal for high-current and low-voltage dc power supplies. • However, these diodes are also used in low-current power supplies for increased $\mathsf{efficiency.}$ 24 **Advantages of Schottky diode** • The capacitance of the diode is low as the depletion region of the diode is negligible. • The reverse recovery time of the diode is very fast, that is the change from ON to OFF state is fast. • The current density of the diode is high as the depletion region is negligible. • The turn-on voltage of the diode is 0.2 to 0.3 volts, which is very low. 25

Characteristics of Practical Devices

- Time delay(td) The time taken by the collector current to reach from its initial value to 10% of its final value is called as the Time Delay.
- Rise time(t_r) The time taken for the collector current to reach from 10% of its initial value to 90% of its final value is called as the Rise Time.
- **Turn-on time (T_{ON})** The sum of time delay (t_d) and rise time (t_r) is called as **Turn-on time**.

 $T_{ON} = t_d + t_r$

- **Storage time (t_s)** The time interval between the trailing edge of the input pulse to the 90% of the maximum value of the output, is called as the Storage time.
- **Fall time (t_f)** The time taken for the collector current to reach from 90% of its maximum value to 10% of its initial value is called as the Fall Time.
- **Turn-off time (T_{OFF})** The sum of storage time (t_s) and fall time (t_f) is defined as the Turnoff time.

 $T_{OFF} = t_s + t_f$

Pulse Width(W) - The time duration of the output pulse measured between two 50% levels of rising and falling waveform is defined as Pulse Width.

