

Internal Assesment Test – 2

Sub: Solar and Wind Energy (Professional Elective)					Code: 18EE731			
Date: 17/12/2021	Duration: 90 mins	Max Marks: 50	Sem: 7	Secti	ction: A&B [EEE]			
Answer ANY FIVE full questions. Explain your notations explicitly and clearly. Sketch figures wherever necessary. Good luck!								
			NAS	Marks	OBE			
				IVIC	כא וג	CO	RBT	
Q1. With a neat ske	tch, Explain box type sola	r cooker.		[1	[0]	CO3	L2	
Q2a. With a neat sketch, explain flat plate type evacuated tube collector.					6] [CO3	L2	
Q2b. Calculate the number of day light hours (sunshine hours) in Srinagar on January 1 and on July 1. The latitude of Srinagar is 340 05' N.					4]	CO2	L3	
Q3. List out various types of solar cells. Explain in detail the type of solar cells based on junction structure.					LO]	CO2	L2	
Q4. With the help of block diagrams, explain the different configurations of stand-alone solar PV systems.					LO]	CO2	L3	
Q5. What is the effect of partial and complete shadowing of a cell in a solar PV module?					ا [0]	CO2	L3	
Q6a. With the help o	f as neat sketch, explain t	he working of a solar wa	ter pump.	[6	6] [CO2	L2	
Q6b. Calculate the operation of the color of	ptimum wavelength of lig IS is 2.42 eV.	ht for photovoltaic gene	ration in a CdS cell	. The	4]	CO2	L2	

Solution

1. With a neat sketch, explain box type of solar cooker.

- Reflective mirror (polished glass, metal or metalized film)
- Reflective mirror concentrates sunlight on cooking area
- Converting Light to Heat
- Black surface on food container or inside of a solar cooker
- Absorbs light and heats the content
- Trapping Heat
- Plastic bag or tightly sealed glass cover traps heat
- Greenhouse Effect
- Glass transmits visible light
- Blocks escaping of infrared thermal radiations

112

In turn amplifies heat trapping effect

TYPES OF SOLAR COOKERS

Box Type Solar Cooker

- Well insulated box
- o Double glass lid
- Reflector cover on inside
- External dimension of a typical family size (4 dishes) box cooker is 60 x 60 x 20 cm
- Simple in construction and operation
- Box receives direct radiation and reflected radiation from reflector mirror fixed on inner side of box cover hinged to one side of the box
- Angle of reflector is adjusted accordingly
- With addition of reflector temperature rise of 15 to 25 °C is achieved
- Glass cover consisting of two layers of clear window glass sheets serves as box door
- Box cover traps heat due to green house effect
- With single reflector temperature in solar cooker in maintained from 70 to 110 °C
- Maximum air temperature obtained inside the box is 140 °C in winter to 160 °C in summer
- This is enough to cook boiling type food slowly in 1 to 4 hours

- Meat should be allowed to cook for 3 to 4 hours, vegetables form 1 ½ to 2 ½ hours, all types of dals can be cooked in 1 ½ to 2 hours, rice is cooked between 30 min to 2 hours Best time of day to cook is between 11 am to 2 pm
- Cooking is faster in summer than in winter
- o Can cook 2 kg of food and can save 3 to 4 LPG cylinder fuel a year
- Electrical back up is provided to use during non sunshine hours
- Cost varies between Rs. 5000/- to Rs. 6290/- depending on type, size, quality, and electrical backup facility
- More affordable, folding type solar cooker made of cardboard is also developed
- In India a typical good quality cooker with a mirror varies between Rs. 1000/- to Rs. 2500/- and can be used for at least 250 days in a year with a pay back period of 3 to 4 years
- Keeps food warm in afternoon and evening
- Most widely used
- It is estimated that more than 600,000 cookers have been sold and the number is growing at a rate of about 20,000 to 30,000 every year

ADVANTAGES

- No attention during cooking
- o No fuel required
- Negligible maintenance
- No pollution
- No problem of charring of food and no over flowing
- Vitamins of food are not destroyed and food cooked is nutritive and delicious with natural taste

DISADVANTAGES

- o Should cook according to sunshine and menu has to be planned
- More time for cooking
- o Food cannot be cooked in cloudy days or night
- Box type cookers with no reflector or with one reflector cannot be used for cooking chapatis and purees as they require high temperatures

2a. With a neat sketch, explain flat plate type evacuated tube collector.

2b. Calculate the number of day light hours (sunshine hours) in Srinagar on January 1 and on July 1. The latitude of Srinagar is 34^0 05' N.

$$\frac{\sqrt{34} + \sqrt{3}}{\sqrt{34}} = \frac{\sqrt{34}}{\sqrt{34}} = -23.01^{\circ}$$

$$\frac{\sqrt{34} + \sqrt{34}}{\sqrt{34}} = \frac{\sqrt{34}}{\sqrt{34}} = -23.01^{\circ}$$

$$\frac{\sqrt{34} + \sqrt{34}}{\sqrt{34}} = \frac{\sqrt{34}}{\sqrt{34}} = -23.01^{\circ}$$

$$\frac{\sqrt{34} + \sqrt{34}}{\sqrt{34}} = -23.01^{\circ}$$

$$\frac{\sqrt{34} + \sqrt{34}}{\sqrt{34}$$

3. List out various types of solar cells. Explain in detail the type of solar cells based on junction structure.

Table Off Clemental S	emiconductors used in sol	*,		1	
	Group of periodic			1	
11	III IV	V	VI		
	ВС		10-12-1-125	- B	
	Al Si	P	S	60	
Zn	Ga Ge	As	Se	3 3	
Cd	In	Sb	Te	21	
application	Part of the Part o		MA NAME TO A SE		
application			ors used in solar P\ ap (eV) at 300 K	S. All	
applications			MA NAME TO A SE		
	Name		ap (eV) at 300 K	X.	
application:	Name Carbon (diamond)		ap (eV) at 300 K 5.5		
application: Element or compound	Name Carbon (diamond) Germanium		ap (eV) at 300 K 5.5 0.67		
application: Element or compound Ge Ge GaAs	Name Carbon (diamond) Germanium Silicon		ap (eV) at 300 K 5.5 0.67 1.12		
applications Element or compound Ge	Name Carbon (diamond) Germanium Silicon Gallium Arsenide		ap (eV) at 300 K 5.5 0.67 1.12 1.43		
application: Element or compound Ge Ge Gi GaAs GdS	Name Carbon (diamond) Germanium Silicon Gallium Arsenide Cadmium sulfide	Band g	ap (eV) at 300 K 5.5 0.67 1.12 1.43 2.42		

- When metal and semiconductor are brought in contact either a ohmic contact (permitting bidirectional current) or an rectifying contact (permitting unidirectional current) is formed
- Rectifying contact if formed is termed as Schottky Junction (SJ)
- SJ has depletion layer and a built in electric field on semiconduct side of the junction
- This field sweeps minority carriers on other side of the junction
- Simple to fabricate
- But has relatively low V_{oc}

P-n multijunction cell

- · Stacks junctions of different band gaps
- Top junction has wider band gap followed with junctions had band gaps in decreasing order
- · All junctions are in series
- Higher energy photons are absorbed at the top junction followed by absorption of lower energy photons by subsequent junctions
- Drawback is the unwanted reverse biased pn junction(dotted line in series opposition between two junctions
- · This will lead to power dissipation

P-i-n (p-type-intrinsic-n-type) semiconductor junction

- · Eliminates unwanted reverse biased junction by introducing
- P+ N+ tunnel junction or P-i-N-type junction
- Intrinsic silicon is interposed between p and n layers
- This technology is used in amorphous silicon solar cells

Based on Types of Active Material Used

- Single crystal silicon cell (c-Si)
- Multicrystaline silicon cell (c-Si)
- Amorphous silicon cell(a-Si)
- Gallium Arsenide cell (GaAs)
- Copper indium Deselenide cell (CIGS)
- Cadmium Telluride cell (CdTe)
- Organic PV cell

4. With the help of block diagrams, explain the different configurations of stand-alone solar PV systems.

5. What is the effect of partial and complete shadowing of a cell in a solar PV module?

6a. With the help of as neat sketch, explain the working of a solar water pump.

6b. Calculate the optimum wavelength of light for photovoltaic generation in a CdS cell. The band gap for CdS is 2.42 eV.

Eq = 2.42 eV

photon energy
$$E = \frac{1.24}{3}$$
 must be greater than Θ regnal

to E_q for generation of each pair

i.e., $E = \frac{1.24}{3} > E_q$
 $\Rightarrow \Im \leq \frac{1.24}{2} \leq 0.512 \mu m$.