Third Semester B.E. Degree Examination, Feb./Mar. 2022 **Analog and Digital Electronics**

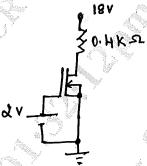
Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- Explain the working of N-channel DE-MOSFET, with the help of neat diagram. (08 Marks) (06 Marks)
 - Mention the differences between JFET and MOSFET.

List and explain any one application of FET and its working with neat circuit diagram. (06 Marks)


OR

What is Multivibrator? Explain the working of Astable multivibrator using 555 timer IC.

Explain the Performance parameters of op-amp.

(08 Marks)

Figure below shows Fig Q2(c) a biasing configuration using DE-MOSFET. Given that the saturation drain current is 8mA and the pinch off voltage is -2V. Determine the valve of V_{GS} , I_D and V_{DS} .

(04 Marks)

Module-2

Fig Q2(c)

What are Hazards? Explain the types of Hazards and its covers.

(08 Marks)

- Find the minimal sum and minimal product for the following Boolean function using K-map, $f(a, b, c, d) = \Sigma m (6, 7, 9, 10, 13, 14) + \Sigma d (1, 4, 5, 11).$ (08 Marks)
- What is HDL? Write the verilog code for given expression $Y = AB + \overline{AB}$ using data flow (04 Marks) model and behavioural model.

OR

Using Quine-McClusky method simplify the following Boolean equation: 4

 $f(a, b, c, d) = \Sigma m (2, 3, 7, 9, 11, 13) + \Sigma d (1, 10, 15).$

(08 Marks)

- Design a four input system, in which input system indicates when members divisible by 3 or 5 occur. Find the followings:
 - Write truth table and Boolean expression in Σ and π notations i)
 - Using K-map simplify the Boolean expression in minterm form ii)
 - iii) Implement logic circuit using basic gates.

(08 Marks)

Describe positive and negative logic.

(04 Marks)

Module-3

5 a. Show how using 3 to 8 decoder and multi input OR gates, following Boolean expressions can be realized simultaneously.

 $F_1(a, b, c) = \sum m(0, 4, 6), F_2(a, b, c) = \sum m(1, 3, 7), F_3(a, b, c) = \sum m(1, 2, 3, 7).$ (06 Marks)

b. What is Multiplexer? Implement the following function using 8:1 multiplexer.

 $f(a, b, c, d) = \Sigma m (0, 1, 5, 6, 8, 10, 12, 15)$

(06 Marks)

c. Design 7-segment decoder using PLA.

(08 Marks)

OR

- 6 a. What is magnitude comparator? Explain 2-bit comparator. (08 Marks)
 - b. Explain with neat circuit, 3-bit parity generator and 4-bit parity checker for odd parity.

(08 Marks)

c. Show how two 1 to 16 deMUX can be connected to get 1 to 32 deMUX.

(04 Marks)

Module-4

- 7 a. What is switch contact bounce? Explain the working principle of a simple RS Latch debounce circuit. (08 Marks)
 - b. What is Race around condition? With block diagram and truth table, explain the working of JK master slave flip flop. (08 Marks)
 - c. Differentiate between Synchronous and Asynchronous counter.

(04 Marks)

OR

8 a. Obtain the state transition diagram and excitation table for SR, D, T and JK flip flops.

(08 Marks)

- b. Design a 4-bit SISO register using D-Flip-Flops and explain the working with neat timing diagram. (06 Marks)
- c. Design a synchronous mod 5 down counter using JK flip-flops.

(06 Marks)

Module-5

9 a. Define Counter. Design a Synchronous counter for the sequence

 $0 \rightarrow 4 \rightarrow 1 \rightarrow 2 \rightarrow 6 \rightarrow 0 \rightarrow 4$ using JK flip-flop.

(08 Marks)

b. With a neat block diagram, illustrate the working of digital clock.

(06 Marks)

c. Explain counter type A/D converter.

(06 Marks)

OR

- 10 a. Explain with block diagram, the operation of successive approximation converter. (08 Marks)
 - b. Illustrate the working of dual slope converter with neat diagram

(08 Marks)

c. Explain the terms Accuracy and Resolution for D/A converter.

(04 Marks)

* * * * *