Third Semester B.E. Degree Examination, Feb./Mar.2022 Computer Organization

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Explain the basic operational concepts of a computer, with a neat block diagram. (08 Marks)
 - b. Explain basic input/output operations and write a program snippet to read a character and print it on screen till newline is encountered. (08 Marks)
 - c. A program contains 1000 instructions, out of that 25% instructions requires 4 clock cycles, 40% instructions require 5 clock cycles and remaining requires 3 clock cycles for execution. Find the total time required to execute the program running in a 1 GHz machine. (04 Marks)

OR

- 2 a. What are addressing modes? Explain the following addressing modes, with an example for each, (i) Indirect mode (ii) Index mode
 - (iii) Relative mode (iv) Auto increment mode. (08 Marks)
 - b. Explain shift and rotate operations with examples. (08 Marks)
 - c. Explain Big-Endian and Little-Endian method of byte addressing with an example.

(04 Marks)

Module-2

- a. Explain the working of the Direct Memory Access (DMA) controller in detail. Also, with the supporting diagram, explain different registers in a DMA interface. (08 Marks)
 - b. Explain centralized and distributed BUS Arbitration, with diagrams. (08 Marks)
 - c. Explain how interrupt requests from several input/output devices can be communicated to a processor using Daisy Chain Mechanism. (04 Marks)

OR

- 4 a. Using the Timing diagram of an input Data Transfer and the Handshake scheme, explain the input operation on an asynchronous BUS. (08 Marks)
 - b. Draw the block diagram of universal serial BUS structure connected to the host computer.

 Briefly explain all fields of packets that are used for communication between a host and a device connected to a USB port.

 (08 Marks)
 - c. Explain with a block diagram the keyboard to processor connection in parallel port.

(04 Marks)

Module-3

- 5 a. Draw the organization of a 1K×1 memory cell and explain it's working. (06 Marks)
 - b. Explain the internal organization of a 16-Megabit dynamic RAM (DRAM) chip configured as 2M×8 cells, with a neat diagram. (08 Marks)
 - c. Assume a disk unit has 24 recording surfaces. It has a total of 14,000 cylinders. There is an average of 400 sectors per track. Each sector contains 512 bytes of data.
 - (i) What is the maximum number of bytes that can be stored in this unit?
 - (ii) What is the data transfer rate in bytes per second at a rotational speed of 7200 rpm?
 - (iii) Using a 32-bit word, suggest a suitable scheme for specifying the disk address, assuming that there are 512 bytes per sector. (06 Marks)

1 of 2

(08 Marks)

- With a block diagram, explain the direct and set associative mapping between cache and (08 Marks) main memory.
 - Draw a neat diagram of memory hierarchy in contemporary computer system. Also indicate b. relative variation of size, speed and cost per bit in the hierarchy. (06 Marks)
 - c. Explain with a block diagram, how the translation look aside buffer is used in implementing (06 Marks) virtual memory.

- Explain the design of a four-bit carry look ahead adder. (06 Marks)
 - Explain Booth's algorithm. Multiply using Booth's multiplication for the given Multiplicand: 0 1 0 1 1 0 1 and Multiplier: 0 0 1 1 1 1 0. (06 Marks)
 - Design sequential circuit binary multiplier with a neat block diagram. Realize the above (08 Marks) circuit for binary multiplier to calculate $+13 \times +11$.

- Solve using restoring division for the given Dividend: 1000 and Divisor: 00011. Also, write the algorithm steps.
 - (08 Marks) Using carry-save addition of Summands (CSA) for 4-bit operands. Perform multiplication
 - (08 Marks) between 45 and 63. Show and explain the IEEE floating point representation for 32-bit (single precision)
 - (04 Marks) number.

Module-5

- Analyze the single bus architecture with a neat diagram and write the sequence of control steps to execute the instruction ADD R₁, R₂, R₃. (08 Marks)
 - Analyze the multiple bus architecture with a neat diagram and write the sequence of control (08 Marks) steps to execute the instruction ADD R₁, R₂, R₃.
 - (04 Marks) List the remote functionality of home telemetry system.

OR

- Discuss the following in detail: 10
 - NUMA processor
 - UMA processor.

- BANGALORE 560 037
- With a neat diagram, explain the working of a digital camera. (08 Marks)
- (04 Marks) Compare Hardwired control unit with micro-programmed control unit.