USN

18CS33

Third Semester B.E. Degree Examination, Feb./Mar. 2022

Analog and Digital Electronics

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. What is biasing? Mention different BJT biasing techniques. Explain voltage divider bias.
 (08 Marks)
 - b. Explain relaxation oscillator.

(06 Marks)

c. Write a note on opto coupler.

(06 Marks)

OR

- 2 a. Explain active filters. List advantages of active filters over passive filters. (06 Marks)
 - b. Explain with diagram, R-2R ladder type D to A converter.

(08 Marks)

c. Define op-amp. Explain the performance parameters of op-amp.

(06 Marks)

Module-2

3 a. Explain Don't Care condition with an example.

(04 Marks)

b. Reduce the following functions using K-map technique:

 $F(P, Q, R, S) = \Sigma m(0, 1, 4, 8, 9, 10) + d(2, 11)$

(08 Marks)

c. Using Quine McClusky method, simplify the expression:

 $F(P, Q, R, S) = \Sigma m(0, 3, 5, 6, 7, 11, 14)$

Write the gate diagram for the same.

(08 Marks)

OR

4 a. Explain entered variable map method.

(05 Marks)

- b. Apply Quine McClusky method to find the essential prime implicants for the Boolean expression $f(a, b, c, d) = \sum m(1, 3, 6, 7, 9, 10, 12, 13, 14, 15)$ (07 Marks)
- c. For the below expression, draw the logic diagram using AOI logic for minimal sum. Obtain minimal sum using K-map.

$$F(a, b, c, d) = \Sigma m(1, 2, 3, 5, 6, 7, 11, 12, 13, 14, 15)$$

(08 Marks)

Module-3

- 5 a. What is hazard? List the types of hazards. Explain static 0 and static 1 hazard. (06 Marks)
 - b. Differentiate between combinational and sequential circuit.

(06 Marks)

c. Implement the following using PLA:

$$A(x, y, z) = \Sigma m (1, 2, 4, 6)$$

$$B(x, y, z) = \Sigma m (0, 1, 6, 7)$$

$$C(x, y, z) = \Sigma m (2, 6)$$

(08 Marks)

ΩD

6 a. Implement the following function using 8:1 multiplexer:

$$f(a, b, c, d) = \Sigma m (0, 1, 5, 6, 8, 10, 12, 15)$$

(07 Marks)

b. What is programmable logic array? How does PLA differ from PAL?

(06 Marks)

c. Realize the following using 3:8 decoder:

(i)
$$f(a, b, c) = \Sigma m (1, 2, 3, 4)$$

(ii)
$$f(a, b, c) = \Sigma m (3, 5, 7)$$

(07 Marks)

			Module-4	. 1
	7	a.	What are the three different models for writing a module body in VHDL? Give e	
		b.	any one model. Derive characteristic equation for JK, T, D and SR flip flop.	(06 Marks) (08 Marks)
To or _ '		c.	Give VHDL code for 4:1 multiplexer using conditional assign statement.	(06 Marks)
	0		Using structural model, write VHDL code for Half Adder.	(06 Mowles)
	8	a. b.	Derive the excitation table for JK and SR flip flop. How SR flip flop is converted	(06 Marks) ed to T flin
		٥.	flop?	(08 Marks)
Profession		c.	With logic diagram, explain JK flip flop.	(06 Marks)
			Module-5	
	9	a.	Define counter. Design synchronous counter for the sequence 0, 4, 1, 2, 6, 0,	4 using JK
		127	flip-flop.	(08 Marks)
		b.	What is shift register? With a neat diagram, explain 4 bit parallel in serial out shift	t register. (08 Marks)
		c.	Write a note on sequential parity checker.	(04 Marks)
			ÓD.	
	10	a.	With a neat diagram, explain ring counter.	(06 Marks)
	-	b.	Design and implement MOD 5 synchronous counter using JK flip-flop. Explain v	
			diagram.	(08 Marks)
		c.	Write a note on parallel adder with accumulator.	(06 Marks)

			CHANGE AND A	
			CMRIT LIBRARY BANGALORE - 560 037	
			· Pr	
		1		
			St. Ch. Ch.	
			D=	
			2 of 2	
			2 of 2	