

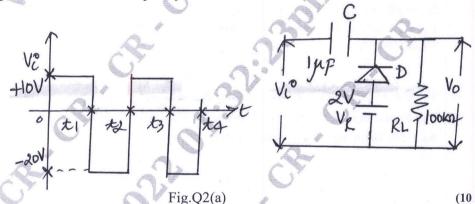
17EE34

Third Semester B.E. Degree Examination, Feb./Mar. 2022

Analog Electronic Circuits

Time: 3 hrs.

Max. Marks: 100


Note: Answer any FIVE full questions, choosing ONE full question from each module.

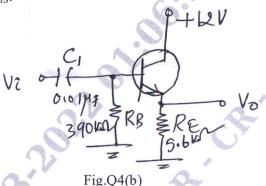
Module-1

- a. Explain the working of series positive clipper circuit which clipps off positive part of the input above V_R. Draw the waveforms and transfer characteristics. Neglect V_r. (05 Marks)
 - b. For the collector to base bias circuit $V_{CC} = 10 \text{ V}$, $R_C = 4.7 \text{ K}\Omega$, $R_B = 220 \text{ K}\Omega$ and $\beta = 100$. Calculate the location of Q-point. (05 Marks)
 - c. For the fixed bias circuit, derive expressions for S_{ICO} , S_{VBE} and S'_{β} . Also obtain the relations between S_{ICO} and S_{VBE} and S_{ICO} and S_{β} . (10 Marks)

OR

2 a. Calculate the output voltage V_0 for the clamper circuit as shown in Fig.Q2(a). The input voltage V_i is also shown. Frequency $V_i = 1$ kHz.

b. For the voltage divider bias circuit, derive expressions for S_{VBE} . Also obtain the relation between S_{VBE} and S_{ICO} . (10 Marks)

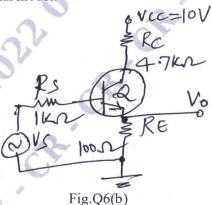

Module-2

- 3 a. For the transistor amplifier in general form, derive expressions for A_I, Z_i, A_V, A_{VS}, A_{IS} and Z_o. Use h-parameter model. (10 Marks)
 - b. A single stage common emitter amplifier has $R_S=1$ K Ω , $R_L=2$ K Ω , $R_1=50$ K Ω , $R_2=2$ K Ω , $R_C=2$ K Ω , $h_{fe}=50$, $h_{ie}=1.1$ K Ω , $h_{oe}=h_{re}=0$, $V_{CC}=10$ V, $R_E=470$ Ω , $C_E=47$ μF , $C_1=C_2=0.01$ μF . Draw the circuit diagram and determine A_I , Z_i , A_V , A_{IS} and A_{VS} and Z_0' .

OR

4 a. Explain the working of common collector or emitter follower configuration. Develop expressions for A_I , Z_i , A_V and Y_o using approximate and exact hybrid model. (10 Marks)

b. For the amplifier circuit as shown in Fig.Q4(b), $h_{fe} = 100$, $h_{ie} = 3.37 \text{ K}\Omega$, $h_{re} = h_{oe} = 0$. Determine A_I , Z_I , A_V , A_{IS} .


(10 Marks)

Module-3

- 5 a. Draw the circuit of cascode amplifier. State its merits. Develop h-parameter model using approximate model. (08 Marks)
 - b. Consider a 2-stage RC coupled CE-CE amplifier. The component values are $R_S = 1~K\Omega$, $R_{C_1} = 15~K\Omega$, $R_{E_1} = 100~\Omega$, $R_1 = 200~K\Omega$, $R_2 = 20~K\Omega$, $C_{E_1} = 47~\mu\text{F}$, $C_1 = C_2 = 0.1~\mu\text{F}$ and for II stage $R_{C_2} = 4~K\Omega$, $R_{E_2} = 330~\Omega$, $C_{E_2} = 47~\mu\text{F}$, $C_1' = C_2' = 0.1~\mu\text{F}$, biasing resistors of II stage, $R_3 = 47~K\Omega$ and $R_4 = 4.7~K\Omega$, $h_{ie} = 1.2~K\Omega$, $h_{fe} = 50$, $h_{re} = 2.5~\times~10^{-4}$ and $h_{oe} = 25~\mu\text{A/V}$. Determine the overall A_V , A_{VS} and Z_o . Draw the circuit diagram and small signal circuit. (12 Marks)

OR

- 6 a. For the current series feedback topology, obtain expressions for R_{if} and R'_{of} . (10 Marks)
 - b. For the voltage series feedback circuit of Fig.Q6(b), calculate A_V , β , D, R_i , R_{if} , R_{of} and R'_{of} , $h_{fe} = 50$. Draw the small signal model.

CMRIT LIBRARY BANGALORE - 560 037

(10 Marks)

Module-4

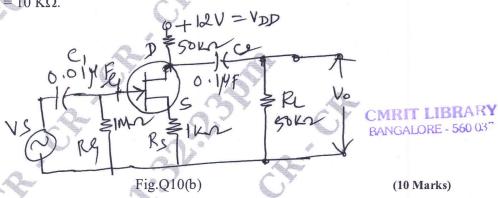
- a. For the transformer coupled class-A amplifier, explain DC and AC operations, AC and DC, output and input power efficiency, maximum efficiency and power dissipation. (10 Marks)
 - b. The input signal V_S is given by $V_S = 1.75\sin(600\,t)$ is fed to a power amplifier and regulating o/p current is $i_o = 15\sin600\,t + 1.5\sin1200t + 1.2\sin1800t + 0.5\sin2400t$. Determine percentage increase in power due to distortion. (05 Marks)
 - c. Explain cross-over distortion in class-B push pull amplifier.

(05 Marks)

OR

- Explain the expression for gain with feedback in oscillators. What is the value of AB to 8 generate oscillations? Thus, explain principle of oscillations. (06 Marks)
 - b. State Barkhausen criteria for sustained oscillations.

(04 Marks)


c. Derive an expression for frequency of oscillations in Colpitt's oscillator and hfe min required for transistor. (10 Marks)

- Module-5
 Explain construction of n-channel D-MOSFET. Draw and explain transfer characteristics 9 and drain characteristics. (10 Marks)
 - Explain biasing for zero current drift and derive condition for zero drift.

(10 Marks)

OR

- 10 For the JFET with fixed bias circuit, obtain expressions for Zi, Zo, Av. Compare the result for exact analysis and when $r_d \gg R_D$.
 - b. For the JFET amplifier as in Fig.Q10(b), determine A_V, Z_i, Z_o and Z'_o. For FET, $g_m = 2 \text{ mA/V}, r_d = 10 \text{ K}\Omega.$

