

17ELN15/25

First/Second Semester B.E. Degree Examination, Feb./Mar. 2022 **Basic Electronics**

GALORE . 51 Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 Draw and explain the VI - characteristics of a PN-junction diode. (08 Marks) With neat circuit diagram, explain the working principles of full wave bridge rectifier. b. (08 Marks) Derive the relationship between α and β . Also calculate the value of α and β value of a transistor if $I_B = 100 \mu A$ and $I_C = 2 \mu A$. (04 Marks)

- With a neat diagram, explain the input and output characteristics of a transistor in common base configuration. (08 Marks)
 - With neat diagram and wave forms, explain the working of a halfwave rectifier. (08 Marks) (04 Marks)
 - Define: i) Zener breakdown ii) Avalanche breakdown.

Module-2

- What is op-Amp? List the characteristics of an ideal op-amp. 3 (06 Marks)
 - For the base bias circuit for npn transistor, find I_B , I_C and V_{CE} if $R_C = 2K\Omega$, $R_B = 220K\Omega$, $\beta = 60$, $V_{BE} = 0.7V$ and $V_{CC} = 18V$. (06 Marks)
 - Explain with neat circuit diagram op-amp integrator. (08 Marks)

- With neat circuit diagram, explain the voltage divider bias circuit. (06 Marks)
 - Find the output voltage of a three input adder circuit in which $R_1 = R_2 = R_3 = 4K\Omega$ and feedback resistance $R_F = 6K\Omega$ and given that $V_1 = -4V$, $V_2 = -2V$ and $V_3 = 3V$.
 - Explain briefly non-inverting, inverting and voltage follower circuit using operation (09 Marks) amplifier.

Module-3

- 5 Convert the following
 - iii) $(FA876)_{16} = (?)_2$ i) $(69)_{10} = (?)_2$ ii) $(101010101)_2 = (?)_{10}$
 - vi) $(BCDE)_{16} = (?)_8$. iv) $(867)_{10} = (?)_8$ $v) (57345)_{10} = (?)_{16}$ (09 Marks) State and prove De - Morgan's theorem for 2 variables with truth table. (06 Marks)
 - (05 Marks) Realize AND, OR, NOT using universal gates.

OR

- Explain half adder. Design the full adder circuit by using two half adder circuits.
 - Simplify the following:
 - i) Y = ABCD + ABCD + ABCD + ABCD
 - ii) Y = AB + AC + BD + CD.

CMRIT LIBRARY BANGALORE - 560 037

(06 Marks)

- c. Perform the following:
 - i) (22-17) by using 2's complement method
 - ii) $(11010110)_2 (01000101)_2$ by using 1's complement method.

(06 Marks)

Module-4

- 7 a. What is the flip-flop? Explain with circuit diagram and truth table NOR gated SR flip-flop.
 (08 Marks)
 - b. Explain the architecture of 8051 microcontroller.

(12 Marks)

OR

- 8 a. With the help of block diagram, explain the micro controller based stepper motor control system. (08 Marks)
 - b. With the diagram and truth table explain NAND gate latch.

(06 Marks)

c. Explain the register banks of 8051 microcontroller.

(06 Marks)

Module-5

CMRIT LIBRARY

- a. Explain the communication system with neat block diagram. BANGALORE 560 037(08 Marks)
 - b. Explain the construction and working operation of linear variable differential transducer's.

 (06 Marks)
 - c. A 500W 1MHz carrier is amplitude modulated with a sinusoidal signal of 1KHz, the depth of modulation is 60%. Calculate the Bandwidth and power in the side band, sideband frequencies and total power in the modulated wave. (06 Marks)

OR

- 10 a. Define modulation. Derive the mathematical expression for the amplitude modulation and the wave forms.

 (08 Marks)
 - b. List the differences between amplitude modulation and frequency modulation. (06 Marks)
 - c. What is transducer? Explain active transducer and passive transducer. (06 Marks)