

Internal Assesment Test - II

Sub:	BASIC ELECTRICAL ENGINEERING Cod					e: 18ELE23					
Date:	04/09/2021	Duration:	90 mins	Max Marks:	50	Sem:	2nd	Bran	ich:	EEF	Ξ
		Ans	swer Any	FIVE FULL	Questi	ons					
									Marks	OBE	
4 \						0				CO	RBT
	rove that in a purely nat its power consum			e current lags v	voltage	by 90°.	Also	prove	5	CO2	L2
	In alternating voltages $(-4 + j10)$ A. Find:	=			it and t	he curr	ent flo	owing	5	CO2	L3
	ii)	The phase a	ingle,								
	,	Power cons									
	Siven $v = 200 \sin 3^{\circ}$ etermine: i) Power f		$d i = 8 \sin \theta$	n (377t -30°)) amps	for an a	ı.c. cii	rcuit,	10	CO2	L3
	ii) True po	ower									
	iii) Appare	ent power									
	iv) Reactiv	e power.									
	ndicate the unit of po	ower calcula	ited.								
C B	Two circuits A and Circuit A consists of consists of 20Ω restalculate i) Current in	10Ω resista sistance in se	nce and 0 eries with	0.12 H inducta	nce in s				10	CO2	L3
	ii) Supply o	current									
	iii) Total po	wer.									
	iv) Draw the	e phasor dia	gram.								
4.a) S	tate the various adv	antages of th	ree phase	e system over s	single p	hase sys	stem.		5	CO3	L1
4.b) E	xplain the generation	n of three pl	hase volta	nges with neat	diagran	1.			5	CO3	L2
C	Derive the relation onnected circuit. De hasor diagram.		-	-			-		10	CO3	L2
	how that the two wircuit. Assume laggi				_	er in a t	hree p	hase	10	CO3	L2
H	low power factor is	obtained fro	m two wa	attmeter readin	gs.						

7.a)	Three similar coils each having resistance of 10Ω and reactance of 8Ω are connected in star, across 400V, 3 phase supply. Determine: i) Line current	5	CO3	L3
	ii) Total power iii) Reading of each of two wattmeter connected to measure power.			
7.b)	The three arms of a three phase load each comprise an inductor of resistance 25Ω and of inductance 0.15H in series with a $120\mu F$ capacitor. The supply voltage is 415V, 50 Hz. Calculate the line current and total power in watts, when the three arms are connected in delta.	5	CO3	L3

Ó

$$P_{av} = \int_{0}^{2\pi} - V_{m} I_{m} \sin(2\omega t) d(\omega t) = 0$$

Vm=200V, Im=8A, W=377=2TIF, Q=30°. 2. f=377=60HZ i) P.f = cosp = 0.866 lagging. ii) True power = VI(OSP = Vm x Im cosp = 692.8 W iii) Apparent power = VI = Vm × Im = 800 VA @ IV) Reachive power = VISINP = Vm x Im SINP = 400VAR. ZA = 10+j271fL =10+j37.7 x =39/175.144° x YA = 1 = 0.0256/-75.144 V 1 - 200V 2B = 20-j(1/271fc) = 20-j79-577452 = 82.052/-75-892°52 YB = 1 = 0.01218 175.892 2 i) IA=VYA=5.12 1-75.144 A=1.3127-j4.9488A. IB = VYB = 2.437 L75.892 A = 0.5937+j2.3625 A ii) I = IA+IB = 1.9064 - J2-5863A = 3.2129/-53.605 A iii) cos Oy = 0.5933 lagging. 10)

4.9) Five advingtages

4.5) Cikuit Dingoum 3

Explanation .

5. Stare Connected load circuit diagram 1

$$OC = CB = \frac{VL}{2}$$
From $\triangle OAB$, $COSSO^\circ = \frac{OC}{OA} = \frac{VRY/2}{V/2}$

Power Pph = VPLIPL(OSO)

6. Down 2 westmeter method for ster connected load . [] WI = IR VRB COS(IR VRB) 0 W2 = Iy VyB (OS (Iy^VyB) VR = Vy = VB = VPL, 0 VRB = VYB = VL IR = Iy = IL = IPL From Phasor, IR VRB = 30-9, Iy VyB = 30+0 W1 = IRVAB COS(30-9) = VLIL COS(30-9) WZ = Iy VyB (OS(30+Q) = VLIL COS(30+Q) : WI+WZ = VLIL(COS(3-4)+(OS(30+4)) WI+UZ = U3 VLILCOSOP/ P.f, WI+WZ=J3VLILCOSA. WI-WZ = VLILSINA $\frac{\omega_1 - \omega_2}{\omega_1 + \omega_2} = \frac{\tan \theta}{\sqrt{3}} \Rightarrow \tan \theta = \frac{\sqrt{3}(\omega_1 - \omega_2)}{(\omega_1 + \omega_2)}$:. Q = tan [[[[[w_1 - w_2]]

P.f Cos of = Cos Stari (13 (w, -w2)] (2)

7-9) Zp = 10+382 = 12.806/38.6602, V_=400V.

For delta, Uph = V2 = 415V