IAT-2 PHYSICS SCHEME

1a. [6]

To show that energy levels below Fermi energy are completely occupied:

For
$$
E < E_F
$$
, at $T = 0$,

$$
f(E) = \frac{1}{e^{\frac{(E-E_F)}{kT}}+1} = 1
$$

To show that energy levels above Fermi energy are empty:

For E > \overline{E}_F , at T=0

$$
f(E) = \frac{1}{e^{(\frac{E-E_F}{kT})} + 1} = 0
$$

At ordinary temperatures, for E = EF,

1b [4]

Success of quantum theory:

1. Specific heat:

Classical theory predicted high values of specific heat for metals on the basis of theassumption that all the conduction electrons are capable of absorbing the heat energy as per Maxwell - Boltzmann distribution i.e.,

$$
C_V = \frac{3}{2}R
$$

But according to the quantum theory, only those electrons occupying energy levels close to Fermi energy (E_F) are capable of absorbing heat energy to get excited to higher energy levels. Thus only a small percentage of electrons are capable of receiving the thermal energy and specific heat value becomes small.

It can be shown that C_V = $10^{-4}\,R$.

This is in conformity with the experimental values.

2. **Temperature dependence of electrical conductivity.2 Marks**

According to classical free electron theory, 1

$$
Electrical conductivity \propto \frac{1}{\sqrt{Temperature}}
$$

Where as from quantum theory

Electrical conductivity

Temperature 1 vibrational energy 1 α collisional area of crosssection of lattice atoms α vibrational energy α 1

This is in agreement with experimental values.

3**. Dependence of electrical conductivity on electron concentration:1 Marks**

According to classical theory,

$$
\sigma = \frac{ne^2\tau}{m} \Rightarrow \sigma \propto n
$$

 But it has been experimentally found that Zinc which is having higher electron concentration

than copper has lower Electrical conductivity.

According to quantum free electron theory,

Electrical conductivity
$$
\sigma = \frac{ne^2}{m} \left(\frac{\lambda}{V_F} \right)
$$
 where V_F is the Fermi

velocity.

Zinc possesses lesser conductivity because it has higher Fermi velocity.

2a [6]

Let $F = F_0$ Sin ω_f be the oscillating applied force

The equation of motion is given by

$$
F = ma = -kx - bv + F_o \sin \omega_f t
$$

$$
m\frac{d^2x}{dt^2} + b\frac{dx}{dt} + kx = F_o \sin \omega_f t
$$

$$
\frac{d^2x}{dt^2} + \frac{b}{m}\frac{dx}{dt} + \frac{k}{m}x = \frac{F_o}{m}\sin \omega_f t
$$

$$
Let \frac{b}{m} = 2R; \frac{k}{m} = \omega^2; \frac{F_o}{m} = F
$$

$$
\frac{d^2x}{dt^2} + 2R\frac{dx}{dt} + \omega_o^2 x = F \sin \omega_f t \dots (1)
$$
 3 Marks

Let one particular solution be $x = A \cdot \sin(\omega_f t - \phi)$

$$
\frac{dx}{dt} = \omega_f A \cdot \cos(\omega_f t - \phi)
$$

$$
\frac{d^2 x}{dt^2} = -\omega_f^2 A \cdot \sin(\omega_f t - \phi)
$$

Also

$$
F \sin \omega_f t = F \cdot \sin(\omega_f t - \phi + \phi)
$$

= $F \sin(\omega_f t - \phi) \cos \phi + F \cos(\omega_f t - \phi) \sin \phi$

Substituting in (1)

$$
-\omega_f^2 A. \sin(\omega_f t - \phi) + 2R A \omega_f \cos(\omega_f t - \phi) + \omega_o^2 A \sin(\omega_f t - \phi)
$$

Comparing coefficients of

$$
\sin(\omega_f t - \phi) \text{ and } \cos(\omega_f t - \phi) \text{ on both sides}
$$

$$
A(\omega_o^2 - \omega_f^2) = F \cos \phi
$$

$$
2R A \omega_f = F \sin \phi
$$

$$
\therefore F^2 = A^2 (\omega_o^2 - \omega_f^2)^2 + 4R^2 A^2 \omega_f^2
$$

$$
F
$$

$$
A = \frac{1}{\sqrt{(\omega_o^2 - \omega_f^2)^2 + 4R^2 \omega_f^2}}
$$

$$
A = \frac{F_o / m}{\sqrt{(\omega_o^2 - \omega_f^2) + \frac{b^2}{m^2} \omega_f^2}}
$$

$$
\tan \phi = \frac{2R\omega_f}{\omega_o^2 - \omega_f^2}
$$

2b.[4]

For peak amplitude, resonance condition to be applied.

 $ω_o = ω_f = 2pi.1000$

$$
A = \frac{F_o / m}{\sqrt{(\omega_o^2 - \omega_f^2) + \frac{b^2}{m^2} \omega_f^2}}
$$

 $A=(F_0/m)/(b/m)$ 2.pi.f

 $= 0.099$ m

3a **[6]**

Hall effect: When a conductor carrying current is placed in transverse magnetic field, an electric field is produced inside the conductor in a direction normal to both current and the magnetic field.

Consider a rectangular slab of an n type semiconductor carrying a current I along + X axis. Magnetic field B is applied along –Z direction. Now according to Fleming's left hand rule, the Lorentz force on the electrons is along +Y axis. As a result the density of electrons increases on the upper side of the material and the lower side becomes relatively positive. This develops a potential V_H -Hall voltage between the two surfaces. Ultimately, a stationary state is obtained in which the current along the X axis vanishes and a field E_y is set up. **Expression for Hall Coefficient:**

At equilibrium, Lorentz force is equal to force due to applied electric field

$$
BeV = e E
$$

Hall Field $E_H = Bv$

Current density $J = -n_e e v$

$$
v = \frac{J}{n_e e}
$$

\n
$$
E_H = B \frac{-J}{n_e e}
$$

\nHence $\frac{E_H}{JB} = -\frac{1}{n_e e} = R_H$
\n $V_H = E_H \cdot l = -R_H \cdot JBl$
\n3b [4]

$$
\rho = \frac{1}{\sigma} = \frac{1}{ne(\mu_h + \mu_e)} = 0.44 \Omega m
$$

$$
n_e = n_h = 2.4 \, \mathrm{x} 10^{19} / m^3
$$

4a [6]

CLAUSIUS – MOSOTTI RELATION:

This expression relates dielectric constant of an insulator (ε) to the polarization of individual atoms (α) comprising it.

$$
\frac{\varepsilon_r - 1}{\varepsilon_r + 2} = \frac{N\alpha}{3\varepsilon_0}
$$

 where N is the number of atoms per unit volume α is the polrisability of the atom ε _r is the relative permittivity of the medium ε _o is the permittivity of free space.

Proof:

If there are N atoms per unit volume, the electric dipole moment per unit volume – known as polarization is given by

 $P = N\alpha E_i$

By the definition of polarization P, it can be shown that

 \overline{P}

$$
= \varepsilon_0 E_a(\varepsilon_r - 1) = N \alpha E_i
$$

$$
\varepsilon_0 \varepsilon_r E_a - \varepsilon_0 E_a = N \alpha E_i
$$

$$
\varepsilon_r = 1 + \frac{N \alpha E_i}{\varepsilon_0 E_a}
$$
.................(1)2 Marks

The internal field at an atom in a cubic structure (γ =1/3) is of the form

$$
E_i = E_a + \frac{p}{3\varepsilon_0} = E_a + \frac{N\alpha E_i}{3\varepsilon_0}
$$

$$
\frac{E_i}{E_a} = \frac{1}{\left[1 - \left(\frac{N\alpha}{3\varepsilon_0}\right)\right]}
$$

$$
E_a
$$

Substituting for *a i E E* in equation (1)**2 Marks**

4 b [4] 2 $3\varepsilon_0$ 1 ε α ε $\varepsilon_r - 1$ *N r* $\frac{r-1}{2}$ = $\ddot{}$ \overline{a} α = 7x10⁻⁴⁰Fm²

5a **[5]**

5b [5]

$$
E_F = \frac{h^2}{8m} \left[\frac{3n}{\pi} \right]^{\frac{2}{3}}
$$

EF ⁼7.93 x10-19J = 4.93 eV

6a **[7]**

0

For the oscillating mass in a medium with resistive coefficient b, the equation of motion is given by

$$
m\frac{d^2x}{dt^2} + kx + b\frac{dx}{dt} = 0
$$

This is a homogeneous, linear differential equation of second order.

The auxiliary equation is
$$
D^2 + \frac{b}{m}D + \frac{k}{m} = 0
$$

The roots are $D_1 = -\frac{b}{2} + \frac{1}{2} \sqrt{b^2 - 4mk}$ *m m* $D_1 = -\frac{b}{2} + \frac{1}{2} \sqrt{b^2 - 4}$ 2 1 2 $b_1 = -\frac{b}{2m} + \frac{1}{2m}\sqrt{b^2 - 4mk}$ and *b* 1

$$
D_2 = -\frac{b}{2m} - \frac{1}{2m}\sqrt{b^2 - 4mk}
$$

The solution can be derived as
\n
$$
x(t) = Ce^{-\left(\frac{b}{2m} - \frac{1}{2m}\sqrt{b^2 - 4mk}\right)t} + De^{-\left(\frac{b}{2m} + \frac{1}{2m}\sqrt{b^2 - 4mk}\right)t}
$$

Note: This can be expressed as
$$
x(t) = Ae^{-\frac{b}{2m}t} \cos(\omega t - \phi)
$$

where $\omega = \sqrt{\frac{k}{m} - (\frac{b}{2m})^2}$

$$
A = \sqrt{C^2 + D^2} \phi = \tan^{-1}(D/C)
$$

Here, the term $Ae^{-\frac{b}{2m}t}$ *b* represents the decreasing amplitude and (ωtɸ) represents phase

Applying following boundary conditions in (1) :

1. At
$$
t = 0
$$
 $x = x_0$ 2.At $t = 0$ $\frac{dx}{dt} = 0$

Simpify

$$
C = \frac{x_0}{2} \left(1 - \frac{b}{\sqrt{b^2 - 4mk}} \right)
$$

$$
D = \frac{x_0}{2} \left(1 + \frac{b}{\sqrt{b^2 - 4mk}} \right)
$$

Case 1: $b^2 > 4mk$ OVER DAMPING Case 2: $b^2 < 4mk$ UNDER DAMPING $Case 3: b² = 4mk$ CRITICAL DAMPING

 \vert $\overline{}$ J

 \backslash

6b[3]

$$
V_{\text{max}} = \omega A = \frac{2\pi}{T} A
$$

$$
T = 1s
$$

7a[6]

EXPRESSION FOR FERMI ENERGY

From Fermi –Dirac theory

Expression for N(E)dE **2 Marks**

$$
n = \int_{0}^{E_F} g(E).f(E).dE = \int_{0}^{E_F} \frac{4\pi (2m)^{\frac{3}{2}}}{h^3} E^{\frac{1}{2}} dE.1
$$

= $\frac{4\pi (2m)^{\frac{3}{2}}}{h^3} \frac{E_F^{\frac{3}{2}}}{\frac{3}{2}}$
 $E_F^{\frac{3}{2}} = \frac{h^3 3n}{8\pi (2m)^{\frac{3}{2}}}$
 $E_F = \frac{h^2}{8m} \left[\frac{3n}{\pi} \right]^{\frac{2}{3}}$

7b[4]

Expression for Fermi Level in Intrinsic Semiconductor Electron density in conduction band is given by 3

$$
n_e = 2\left(\frac{2\pi m_e^* k t}{h^2}\right)^2 e^{-\frac{E_c - E_F}{kT}}
$$

Hole density in valence band may be obtained from the result

$$
n_h = 2\left(\frac{2\pi m_h^* kT}{h^2}\right)^{\frac{3}{2}} e^{-\frac{E_F - E_V}{kT}}
$$

For an intrinsic semiconductor, $n_e = n_h$

$$
2\left(\frac{2\pi m_e^* k t}{h^2}\right)^{\frac{3}{2}} e^{-\frac{E_c - E_F}{kT}} = 2\left(\frac{2\pi m_h^* k T}{h^2}\right)^{\frac{3}{2}} e^{-\frac{E_F - E_V}{kT}}
$$

$$
\left(\frac{m_e^*}{m_h^*}\right)^{\frac{3}{2}} = e^{-\frac{E_f + E_v + E_c - E_f}{kT}}
$$

$$
\frac{3}{2} \ln\left(\frac{m_e^*}{m_h^*}\right) = \frac{-2E_f + E_v + E_c}{kT}
$$

$$
E_f = \frac{E_v + E_c}{2} - \frac{3}{4} k T \ln\left(\frac{m_e^*}{m_h^*}\right)
$$
For Intrinsic semiconductor, m^{*}(e) = m^{*}(h)
$$
E_f = \frac{E_v + E_c}{2} = E_g / 2
$$

8a [3+3]

Expression for Spring Constant for Series Combination

Consider a load suspended through two springs with spring constants k_1 and k_2 in series combination. Both the springs experience same stretching force. Let Δx_1 and Δx_2 be their elongation.

Total elongation is given by

$$
\Delta X = \Delta X_1 + \Delta X_2 = \frac{F}{k_1} + \frac{F}{k_2}
$$

$$
\frac{F}{k_{eqv}} = \frac{F}{k_1} + \frac{F}{k_2}
$$

$$
\frac{1}{k_{eqv}} = \frac{1}{k_1} + \frac{1}{k_2}
$$

Expression for Spring Constant forParallel Combination

Consider a load suspended through two springs with spring constants k_1 and k_2 in parallel combination. The two individual springs both elongate by x but experience the load nonuniformly.

Total load across the two springs is given by

$$
F = F_1 + F_2
$$

\n
$$
k_{\text{eqv}}.\Delta X = k_1.\Delta X + k_2.\Delta X
$$

\n
$$
k_{\text{eqv}} = k_1 + k_2
$$

8b [2+2]

Polar dielectrics: The atoms of these dielectrics are permanently polarized in nature and possess dipole moment. They show orientation polarisation

Ex: Water, Kcl, NH₃

Non Polar dielectrics:

The atoms of these are the materials do not possess permanent dipole moment.They get polarized only in the presence of external electric field**.**

Ex**:** O2, N2, He, Ne,CO2