
IAT-3 PHYSICS SCHEME 

1.a  

Hooke’s Law:     For sufficiently small stresses, strain is proportional to stress; the 

constant of proportionality known as modulus of elasticity depends on the material 

being deformed and on the nature of the deformation.  

 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Strain is proportional to stress at smaller magnitudes. As the stress is increased to 

large magnitudes strain increases more rapidly and the linear relationship between 

stress and strain ceases to hold. This  is referred as elastic limit (A). Increase in 
stress beyond elastic limit causes permanent deformation. This is yielding region. 

Small increase in stress causes large change in strain. Near the yield point C, the 

specimen will continue to elongate (strain) without any increase in load. When the 
material is in this state, it is often referred to as being perfectly plastic. After the 

yielding point (C), the strain randomly increases. This may lead to strain softening/ 

strain hardening in some materials. C onwards the material attains permanent status 
(Plastic) and is known as strain hardening region. After D, the material undergoes 

fracture and breaks. 

 

1.B 

Expression for condition for propagation : 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Consider a light ray falling in to the optical fibre at an angle of incidence θ0  

equal to acceptance angle. Let n0 be the refractive index of the surrounding 

medium . 

Let n1 be the refractive index of the core. 

Let n2 be the refractive index of the cladding. 

From Snell’s Law: 

For the ray OA   n0 sinθ0  = n1 sinr 

                       = n1(1-cos2 θ1
2
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For the ray AB         n1 sin(90 - r) = n2 sin 90   

[ here the angle of incidence is (90 - r) for which angle of refraction is 900]. 

n1 cosr = n2 

Substituting for cosθ1 in equation (1) 
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If the medium surrounding the fiber is air then n0 = 1, 

Numerical aperture = sinθ0 = 
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The total internal reflection will take place only if the angle of incidence θi < θ0 

 sin θi <  sin θ0 

                                                 sin θi  < 
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This is the condition for propagation. 

 

 

 

2.a. 

 

 

 

 

 

 

 

 

From  the triangle BEB1,  
01 45ˆ EBB   

        Here EB is the perpendicular from B to DB1 . DEDB   
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From  the triangle AA1N,  
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Elongation strain + Compression strain = Ɵ/2 + Ɵ/2 = Ɵ 
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3a. 

 Consider a cylindrical rod of rigidity modulus n, length l, radius r fixed at one 

end and twisted at  the other end through an angle θ by a couple. Imagine the 

cylinder to be made of large number of coaxial cylinders of increasing radius. 

Consider a cylinder of radius x and thickness dx. For a given couple, the 

displacement at its rim is maximum. On twisting, the point B shifts to B1. 
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This stress is acting on the area 2.πx.dx .  

 

Total force is              dxx
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3.b. For a square, b =  d 
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4.a.  

 Let the beam be bent in the form of circular arc subtending angle θ at the centre 

of curvature O. Let    a1 b1 be an element at a distance Z from the neutral axis. 
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Let LMNT be the rectangular cross section perpendicular to length. EF is the 

neutral surface. The restoring force on upper half acts inwards and outwards on 

the lower half. 

Consider a small area da at a distance z from the Neutral surface. 

                            Strain produced in the filament
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                                               Here I  is Geometrical Moment of Inertia. 

4.b  

Let AB be the neutral axis of the cantilever of length L fixed at A and loaded at B. 

Consider a section P of the beam at a distance x from A. 

                                     Bending  moment = W .PC =W (L-X)= 
R
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 Here R is the radius of curvature of neutral axis at P. The moment of the load 

increases towards the point A, the radius of curvature is different at different 

points and decreases  towards A. For a point Q at a distance dx from P, it is same 

as at P. 

         PQ = dx = R.dƟ  

                        Bending  moment        W (L-X) 
dx
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Draw tangents to the neutral axis at P and Q meeting the vertical line at C and D. 

The angle subtended by them is dƟ.  The depression of Q below P is given by 
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5. a  

Divergence:  It represents the magnitude of a physical quantity emerging or 

converging at a point. For example tip of a fountain head is a source of divergence. 

Electric fields are said to be divergent in nature.                               Mathematically 

it is obtained by differentiating components of a vector function  F (Fx ,Fy,  Fz ) with 

respect to position coordinates x,y,z respectively. 
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Ex:   Volume charge density enclosed in a closed surface is expressed as  
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Right hand side in the above expression is a scalar. Divergence operation on 

vector yields a scalar function.   Divergence of vector is zero if there is no 
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outflow or inflow. Magnetic fields form closed loops and their divergence is 

zero. 0 B  

Diverging electric field lines at a  positive charge  is an example for Positive 

divergence. converging electric field lines at a  negative charge is an example of 

negative divergence. 

  Curl  : This operation is a measure of degree of rotation per unit area. It yields a 

vector. 

zyx

zyx

aaa
zyx

aaa

aX













ˆˆˆ


 

Ex:    Magnetic field around a straight conductor carrying current is expressed as  

 JXH   

    Curl of a irrotational vector is zero. Static electric fields possesses no curl.              
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5.b.  

The following are the four Maxwell’s equations for time varying fields. 

1. 


D  

2. 0


B  

3. 
t

D
JHx










    (Modified amperes law) 

4. 
t

B
Ex










      (Faradays law) 

     Displacement current density 

  From the equation of continuity 

 
t

J





 
  where ρ is the charge density  

0











 

























dt

D
J

dt

D
D

t
J

  

Thus although 



 J  is not zero but the divergence of 




















t

D
J



  is 

always zero .Hence Maxwell made the assumption that the term 
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 is known as displacement current density 

6.a.  

Gauss divergence theorem: 

Statement: The volume integral of the divergence of a vector function ‘F’ over a 

volume ‘V’ is equal to the surface integral of the normal component of the vector 

function ‘F’ over the surface enclosing the volume V. 

Explanation: 

Consider a Gaussian surface enclosing a charge  Q with a charge density v . 

 Then   
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From Gauss law,  total charge enclosed is  
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From differential form of Gauss law, vD 
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6.b.  
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7.a.  

 

Wave equation for electric field: 
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Consider the equation       
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Taking curl on both sides    
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From (1)  and (2) ,  
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For a free space where there are no charges (ρ=0), no currents (J=0). 
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This is the characteristic form of a wave equation .The solution to this 

equation represents a wave . 

7.b. 
Types: 

1. Single mode fiber: 

Core diameter is around 5-10 µm. The core is narrow and hence it can guide just 

a single mode. 

 

 

- No modal dispersion 

- Difference between n1&  n2 is less.Critical angle is high. Low 

numerical aperture. 

- Low Attenuation -0.35db/km 

- Bandwidth -100GHz 

- Preferred for short range 

Step index multimode fibre : 

- Here the diameter of core is larger so that large number of rays can 

propagate. Core diameter is around 50. µm. 

- High modal dispersion 

- Difference between n1&  n2 is high. Low Critical angle. Large 

numerical aperture. 

- Losses high 

- Bandwidth -500MHz 

- Allows several modes to propagate 

- Preferred for Long range 

 

 

Graded index multimode fiber: 

In this type, the refractive index decreases in the radially outward direction from 

the axis and becomes equal to that of the cladding at the interface. Modes 

travelling close to the axis move slower where as the modes close to the cladding 

move faster.As a result the delay between the modes is reduced. This reduces 

modal dispersion. 

Cladding 
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Variation of refractive index 



 

 

 

 Low modal dispersion 

 High data carrying capacity. 

 High cost 

 Many modes propagate 

 Bandwidth -10GHz 
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Attenuation 

Attenuation is the loss of power suffered by the optical signal as it propagates 

through the fiber.If Pin is the incident energy and PO is the energy at a distance L, 

then  
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For easier representation of loss percentage, the following expression is used 
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Different loss mechanisms: 

1. Absorption losses: 

In this case, the loss of signal power occurs due to absorption of photons by the 

impurities and defects present in glass .Impurities such as  Ge- 0 , B-O, absorb in 

the range of 1-2 µm, chromium and copper ions absorb at 0.6µm.,Fe ions absorb 

at 1.1µm. Hydoxy ions absorb at 1.38µm. Better techniques of making glass with 

reduced water content can minimize these losses.Tominimise the absorption loss, 

impurity content has to be less than 1 part in 109. 

2. Scattering losses: 

This occurs due to the Rayleigh scattering of the signal caused by variations in 

refractive index of the glass due to  changes in composition, defects, presence of 

air bubbles, strains etc. The scattered light moves in random direction and escapes 

from the fiber reducing the intensity. These losses decrease at higher 

wavelengths.Hence, this loss is minimized by operating at high wavelengths. 

                                              Scattered Intensity
4

1


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3. Radiation losses: 

Radiative losses occur due to bending of fiber. 

Macroscopic Bends:This refers to the bends having radii that are large compared 

to the fibre diameter.These losses are reduced by using lower wavelength and lower 

numerical aperture. This loss is high at 1550nm. 

 

 

Microscopic bends: 

These are repetitive small scale fluctuations in the linearity of the fibre axis. 
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