ECE&M (18CV24) - IAT-III

The respondent's email (vima20ec@cmrit.ac.in) was recorded on submission of this form.

Name: *	
Vishwanath	
USN *	
1CR20EC187	
TCR2UEC187	
Section *	
N	
Semester	
2nd sem	
2114 00111	
Subject Code	
18CV24	

First moment of area Second moment of area Product of force and distance square root of area 2. Moment of inertia of a plane area in xy plane is lxx= 2x10^7 mm^44, lyy = 3x10^8 mm^44, Calculate polar moment of inertia of the lamins. * 32x10^7 mm^4 32x10^8 mm^4 5x10^7 mm^4 6x10^7 mm^4 3. Calculate the moment of inertia of a rectangular lamina with respect to its base, Take width(b) = 20 mm, and depth (d) = 40mm *	1. Moment of inertia may be defined as *	2 points
Product of force and distance square root of area 2. Moment of inertia of a plane area in xy plane is lxx= 2x10^7 mm^4, lyy = 3x10^8 mm^4, Calculate polar moment of inertia of the lamins. * 32x10^7 mm^4 32x10^8 mm^4 5x10^7 mm^4 6x10^7 mm^4 3. Calculate the moment of inertia of a rectangular lamina with respect to its base, Take width(b) = 20 mm, and depth (d) = 40mm *	First moment of area	
 square root of area 2. Moment of inertia of a plane area in xy plane is lxx= 2x10^7 mm^4, lyy = 3x10^8 mm^4, Calculate polar moment of inertia of the lamins. * 32x10^7 mm^4 5x10^7 mm^4 6x10^7 mm^4 6x10^7 mm^4 3. Calculate the moment of inertia of a rectangular lamina with respect to its base, Take width(b) = 20 mm, and depth (d) = 40mm * 	Second moment of area	
2. Moment of inertia of a plane area in xy plane is lxx= 2x10^7 mm^4, lyy = 3x10^8 mm^4, Calculate polar moment of inertia of the lamins. * 32x10^7 mm^4 5x10^7 mm^4 6x10^7 mm^4 3. Calculate the moment of inertia of a rectangular lamina with respect to its base, Take width(b) = 20 mm, and depth (d) = 40mm *	Product of force and distance	
mm^4, Calculate polar moment of inertia of the lamins. * 32x10^7 mm^4 32x10^8 mm^4 5x10^7 mm^4 6x10^7 mm^4 3. Calculate the moment of inertia of a rectangular lamina with respect to its base, 2 points Take width(b) = 20 mm, and depth (d) = 40mm *	square root of area	
32x10^8 mm^4 5x10^7 mm^4 6x10^7 mm^4 3. Calculate the moment of inertia of a rectangular lamina with respect to its base, Take width(b) = 20 mm, and depth (d) = 40mm *		2 points
 5x10[^]7 mm[^]4 6x10[^]7 mm[^]4 3. Calculate the moment of inertia of a rectangular lamina with respect to its base, 2 points Take width(b) = 20 mm, and depth (d) = 40mm * 	32x10^7 mm^4	
6x10^7 mm^4 3. Calculate the moment of inertia of a rectangular lamina with respect to its base, Take width(b) = 20 mm, and depth (d) = 40mm *	32x10^8 mm^4	
3. Calculate the moment of inertia of a rectangular lamina with respect to its base, 2 points Take width(b) = 20 mm, and depth (d) = 40mm *	5x10^7 mm^4	
Take width(b) = 20 mm, and depth (d) = 40mm *	O 6x10^7 mm^4	
4.26x10^5 mm^4		2 points
	4.26x10^5 mm^4	
3.13x10^5 mm^4	3.13x10^5 mm^4	
1.06x10^5 mm^4	1.06x10^5 mm^4	
2.21x10^5 mm^4	2.21x10^5 mm^4	

4. Which of the following is the correct expression for calculating moment of inertia 2 points of a triangular lamina with respect to its centroidal horizontal axis. Take base width as b (Parallel to centroidal horizontal axis), and height as h . *
O bh^/3
O bh^/12
O bh^/42
5. Parallel axis theorem is used to calculate moment of inertia of a plane lamina with 2 points respect to*
·
respect to*
respect to* Centroidal vertical axis
respect to* Centroidal vertical axis Centroidal horizontal axis

6. Calculate the moment of inertia of a symmetrical I section shown in figure *

2 points

- 8.47x10[^]7 mm[^]4
- 9.56x10^7 mm^4
- 10.71x10^7 mm^4
- 11.38x10^7 mm^4
- 7. The point at which the total area of a plane figure is assumed to be concentrated is 2 points called _____
- Centroid
- Centre of gravity
- Central point
- Inertial point

8. Where will be the centre of gravity of a uniform rod lies?	2 points
 At its centre Anywhere on its radius Anywhere on its circumference Anywhere on its diameter 	
9. The center of gravity of a circle of radius 10 cm will be	2 points
 At its center of the diameter At the center of the radius Anywhere on the circumference Anywhere in its area 	
10. A rectangle has dimension of 10cm x 20cm. where will be its Centroid distance?	2 points
(10,10)	
(20,5)	
(10,5)	
(5,10)	

11. What is the centroidal distance of an equilateral triangle of side 2 m?	2 points
O.866 m	
O.769 m	
○ 1.000 m	
● 0.577 m	
12. An airplane accelerates down a runway at 3.20 m/s2 for 32.8 s until is finally lifts off the ground. Determine the distance traveled before takeoff.	2 points
O 1650 m	
● 1720 m	
○ 1800 m	
○ 1680 m	
13. A kangaroo is capable of jumping to a height of 2.62 m. Determine the takeoff speed of the kangaroo.	2 points
6.54 m/s	
6.96 m/s	
5.54 m/s	
7.17 m/s	

14. A car starts from rest and accelerates uniformly over a time of 5.21 seconds for a 2 points distance of 110 m. Determine the acceleration of the car.
7.54 m/s^2
9.10 m/s^2
8.10 m/s ²
7.90 m/s^2
15. A feather is dropped on the moon from a height of 1.40 meters. The acceleration 2 points of gravity on the moon is 1.67 m/s^2. Determine the time for the feather to fall to the surface of the moon.
1.98 s
1.29 s
O.85 s
3.28 s
16. A racehorse coming out of the gate accelerates from rest to a velocity of 15.0 m/s 2 points due west in 1.80 s. What is its average acceleration?
● -8.33 m/s^2
7.76 m/s^2
-8.04 m/s^2
9.54 m/s^2

17. Upton Chuck is riding the Giant Drop at Great America. If Upton free falls for 2.60 seconds, what will be his final velocity?	2 points
-30.5 m/s	
● -25.5 m/s	
-18.5 m/s	
20.5 m/s	
18.The change of position of body with respect to time from an arbitrary fixed point is known as	2 points
speed	
displacement	
velocity	
kinetics	
19. The rate of change of displacement in a specific direction is known as	2 points
acceleration	
Speed	
odistance traversed	
velocity	

20. A body is moving with a velocity of 2 m/sec. After 5 second the velocity of the body reaches 6 m/sec. Find the acceleration of the body.	2 points
● 0.8 m/sq. sec	
0.6 m/sq. sec	
1.2 m/sq. sec	
1 m/sq. sec	
21. Displacement is a scalar quantity.	2 points
○ True	
False	
22. Which one is the equations of motion	2 points
v= u+at	
s=ut+at2	
V2=u2+2as	
All of above	

23. Which of the following remains constant if a body travels with constant acceleration?	2 points
Time	
Velocity	
Displacement	
None of the above	
24. The path traced by the projectile in the space is known as	2 points
Angle of projection	
Time of flight	
Range	
Trajectory	
25. D'Alembert's principle states that the resultant of the external forces F and the kinetic reaction acting on a body equals zero. The kinetic reaction is defined as the negative of the product of the mass m and the acceleration a.	2 points
True	
False	

This form was created inside of CMR Institute of Technology.

Google Forms