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Internal Assessment Test 2 – February 2022 

Sub: Engineering Physics Theory Sub Code: 21PHY12 Branch: CS/IS/CIV/MECH 

Date: 28/02/2022 Duration: 90 min’s Max Marks: 50 Sem/Sec: I Sem / A, B, C, D, E, F and G OBE 

Answer any FIVE FULL Questions 

Given: c = 3  108 m/s; h = 6.625  10 -34Js; k = 1.38  10 -23 J/K; me = 9.1  10-31kg; e = 1.6  10-19C MARKS 

CO RBT 

 

1 (a)  Discuss the theory of forced oscillations and hence classify the conditions of variation of amplitude 

and phase with angular frequency. 

[07] CO2 L2 

   (b) Calculate the probability that an energy level at 0.2eV below Fermi level is occupied at temperature 

500K. 

[03] CO3 L3 

2 (a) Explain the Quantum Mechanical modifications to the classical free electron theory of metals to 

explain the electrical conductivity in solids and its success. 

[07] CO3 L3 

   (b)  Find the resistivity in Intrinsic Germanium from the following data.  n = 2.4x1010/m3,µe = 0.39m2/VS, 

µh = 0.19m2/VS 

[03] CO2 L2 

3 (a)  Deduce the expression for electrical conductivity of a conductor using the quantum free electron 

theory of metals. 

[06] CO3 L2 

   (b) Show that occupation probability at an energy EF+∆E is equal to non-occupation probability at the 

energy EF-∆E. 

[04] CO3 L4 

4 (a) What is Hall effect? Obtain the expression for the Hall coefficient. [07] CO2 L3 

     (b)  The Hall coefficient of certain silicon specimen was found to be –7.35 × 10–5 m3 C–1 . Determine the 

nature of the majority charge carriers and their number concentration. 

[03] CO2 L3 

             PTO 
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5 (a) What are damped oscillations. Discuss the theory of damped oscillations. Represent overdamping, 

critical damping and under damping by graph. 

[7] CO2 L3 

   (b)  A free particle is executing S.H.M in straight line with a period of 5 seconds. At the equilibrium point, 

the velocity is found to be 0.7m/s. Find the displacement at the end of 10 seconds, and also the 

amplitude of oscillation. 

[3] CO3 L3 

6 (a) Define SHM and mention any two examples. Derive the differential equation using Hooke’s law. [6] CO2 L3 

   (b) Given the damping constant of the medium 0.1 kg s-1 calculate the amplitude of the oscillations at 

resonance given the mass attached to the spring-mass oscillator 50 x 10-3 kg, the amplitude of the 

applied periodic force 1N and the period of oscillations 1 second. 

[4] CO3 L4 

7 (a)   Define Fermi Energy. Find the electron density in Potassium if the Fermi energy is 3eV                  [4] CO3 L3 

     (b)     Discuss the variation of Fermi factor with temperature. [6] CO3 L3 

  8 (a)   Applying Hooke’s law derive the expression for the effective spring constants of Series and Parallel 

combination of springs. 

[6] CO2 L3 

     (b)  Derive the expression for the electrical conductivity of a semiconductor. [4] CO2 L3 
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IAT-2 PHYSICS SCHEME 
1.a) Let F = Fo Sinωft be the oscillating applied force 

The equation of motion is given by 
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(3 marks) 

Case 1: amplitude is infinity when at  ω0 = ɷf , 

damping is zero 

Case 2:   Amplitude is less when ω0 ≠ ɷf    (2 marks) 

 

1B ( Formula-1mark, Substitution- 1 mark, 

Answer- 1 mark) 

 
2A 

Success of quantum theory:  Quantum theory modified the energy 

of free electrons in metal to be quantized as per Paulis exclusion 

Principle and their distribution is given by Fermi – Dirac theory as  

                    n(E)dE = g(E) dE f(E) 

 Where n(E) is number of conduction electrons per unit energy range  

n(E)dE = g(E)dE . f (E) 

 g(E) is density of states  = 
2

1

3

2

3

E
h

m28
 

                                       f(E) is the Fermi probability factor . (2 marks) 

 

 

1. Specific heat:  (1 mark)                      

Classical theory predicted high values of specific heat for metals on 

the basis of the assumption that all the conduction electrons are 

capable of absorbing the heat energy as per Maxwell -    Boltzmann 

distribution i.e., 
3

2
VC R  

But according to  the quantum theory, only those electrons 

occupying energy levels close to Fermi energy (EF ) are capable of 

absorbing heat energy to get excited to higher energy levels. Thus 

only a small percentage of electrons are capable of receiving the 

thermal energy and specific heat value becomes small. 

It can be shown that CV = R410
. 

This is in conformity with the experimental values. (2 marks) 

2. Temperature dependence of electrical conductivity.                        

According to classical free electron theory, 

 Electrical conductivity  
eTemperatur

1
  

Where as from quantum theory 

Electrical conductivity  

eTemperatur

1

energylvibrationa

1

atomslatticeoftionseccrossofarealcollisiona

1


 

This is in agreement with experimental values. 

3. Dependence of electrical conductivity on electron 

concentration: (2 marks)                      

    According to classical theory,   

  
m

ne 


2

  n  

   But it has been experimentally found that Zinc which is having 

higher electron concentration   

   than copper has lower Electrical conductivity. 

   According to quantum free electron theory,  



   Electrical conductivity  









FVm

ne 


2

  where VF is the Fermi 

velocity. 

  Zinc possesses lesser conductivity because it has higher Fermi 

velocity. 

Metal n 𝜎 

Cu 8.45x1028/m3 6x107(Ωm)-1 

Zn 13x1028/m3 1x107(Ωm)-1 

 

 

2B ( Formula-1mark, Substitution- 1 mark, Answer- 

1 mark) 
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3A. 

Expression for Electrical conductivity: 

Imagine a conductor across which an electric field E is applied. The 

free electrons acquire drift velocity and the matter  wave number 

change from k1 to k2 in time interval  τF in the presence of electric 

field. 

The force on the free electron is 
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On integration          
h
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12  …….(1) (4 marks)                      

From quantum theory, conductivity 
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Substituting (1) in (2) 

We get E
m

ne
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
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  …(3) 

Since from Ohm’s, J = σE, conductivity σ can be written as  
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3B        For an energy level E above Fermi level by ∆E, 

           Probability of occupation is  
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For an energy level E below Fermi level by ∆E, 
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Non occupation probability = 1-f(E)  

=
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4A 
       

 

 

 

 

                         Lorentz force (FL) 

 

                         Electric force (eE) 

     

 

  Hall effect: When a conductor carrying current is placed in 

transverse magnetic field, an electric field is produced inside the 

conductor in a direction normal to both current and the magnetic 

field. (1 mark)                                                                   

 
 
 
 
 

 

Consider a rectangular slab of an n type semiconductor carrying a 

current I along + X axis. Magnetic field B is applied along –Z direction. 

Now according to Fleming’s left hand rule, the Lorentz force on the 

electrons is along +Y axis. As a result the density of electrons 

B 

Conventional current 

current 

Here B is along –X , V is along –Y axis 

Lorentz force= =  e (VXB) 

  kiXje ˆˆˆ   

So the electron is deflected along + Z axis 

HF 
Here B is along –X , V is along –Y axis 

Lorentz force=   kiXje ˆˆˆ   

So the electron is deflected along + Z axis 



increases on the upper side of the material and the lower side 

becomes relatively positive. This develops a potential VH-Hall voltage 

between the two surfaces. Ultimately, a stationary state is obtained 

in which the current along the X axis vanishes and a field Ey is set up.                    

Expression for Hall Coefficient: (4 marks)                      

At equilibrium, Lorentz force is equal to force due to applied electric 

field 

                   Hd eEBev 

  

                   Hall Field EH = BVd 
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Case 1: For P type semiconductor, the bottom surface will be at 

positive potential. (1 mark)                      

  

Case 2: For n type semiconductor, the bottom surface will be at 

positive potential (1 mark)                      

 

4B( Formula-1mark, Substitution- 1 mark, Answer- 

1 mark) 
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5A  In  damped oscillations, the oscillator looses energy due to 

frictional forces causing the decrease in amplitude. (1 mark)                      

 Let us assume that in addition to the elastic force F =- kx, there is a 

force that is opposed to the velocity, F = b v where b is damping 

coefficient  
For the oscillating mass in a medium with resistive coefficient b, the 

equation of motion is given by 

0
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This is a homogeneous, linear differential equation of second order. 

The auxiliary equation is    02 
m

k
D

m

b
D  

The roots are mkb
mm

b
D 4

2

1

2

2

1   and 

mkb
mm

b
D 4

2

1

2

2

2   

The solution can be derived as  
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Note: This can be expressed as x(t) =   
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22 DCA  )/(tan 1 CD (4 marks)                      

Here, the term  

t
m

b

Ae 2


 represents the decreasing amplitude and    

(ωt-ɸ) represents phase 

Case 1:      mkb 42         OVER DAMPING 

Case 2:      mkb 42         UNDER DAMPING 

Case 3:      mkb 42         CRITICAL DAMPING 

(2 marks)                      
 

 

 

 

 

 

 

 

 

 

 

 

 

5B ( Formula-1mark, Substitution- 1 mark, Answer- 

1 mark) 

 
6A 

SIMPLE HARMONIC MOTION   

It is the periodic oscillations of an object caused when the restoring force on 

the object is proportional to the displacement. The restoring force is  directed 

opposite to displacement. 

Under damping 
Critical damping 

Over damping 

displacement 

time 



Ex: 1. Oscillation of mass connected to spring 

       2. Oscilations of prongs of Tuning fork 

       3. Simple pendulum  (2 marks) 

 

                           Restoring force α – displacement 

                                              F = -k x 

 Here k is the proportionality constant known as spring constant. It represents 

the amount of restoring force produced per unit elongation and  is a relative 

measure of stiffness of the material. 
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Here ωo is angular velocity = 2.π.f 

f  is the natural frequency     

m

k
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2

1
  

The Solution is of the form    x(t) = A cosωot + B sinωot. (4 marks) 

              This can also be expressed as x(t) = C cos(ωot-ѳ) where 

22 BAC                    tanѳ = B/A 

 

6B( Formula-2marks, Substitution- 1 mark, Answer- 

1 mark) 

 

                        Amplitude of forced oscillations at resonance (ɷf=ɷ0) 
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7A 
It is the highest energy possessed by an electron at zero Kelvin. . (1 

mark) 

 

( Formula-1mark, Substitution- 1 mark, Answer- 1 

mark) 
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7B. 

 

To show that energy levels below Fermi energy are completely occupied: 

For E < EF, at T = 0,                           
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1
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To show that energy levels above Fermi energy are empty: 

For E > FE , at T=0 

                                  f (E) = 

1

1
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
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EE F

e

= 0  

At ordinary temperatures, for E = EF,                      

f(E) = 
2

1
. (4 marks) 

 

 

 

 

 

 

 

 

 Graph (1 mark) 

 

 

8A 

           Expression for  Spring Constant  for  Series 

Combination(3 marks) 

 

 

 

T= 0 K 

T> 0 K 

EF 



Consider a load suspended through two springs with spring 

constants k1 and k2 in series combination. Both the springs 

experience same stretching force. Let Δx1 and Δx2 be their 

elongation. 

Total elongation   is given by 
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Expression for Spring Constant  forParallel 

Combination(3marks) 

 

 

Consider a load suspended through two springs with spring constants 

k1 and k2 in parallel combination. The two individual springs both 

elongate by x but experience the load non uniformly. 

Total load across the two springs is given by 
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8B 

Electron current ( )e h dI n eAv e  

Hole current  ( )h h dI n eAv h  

current   density 

( ) ( )e h
h d e d

I II
J n ev h n ev e E

A A



     …..(1) (2 

marks) 

 

 

But drift velocity Vd  = µE=µ.J/σ           µ = Vd/E      

Using (1),  σ = ne e µe   + nh e µh 

In an intrinsic semiconductor, number of holes is equal 

to number of electrons. 

 ][en holeeeint  (2 marks) 

 

ne is the electron concentartion 

np is the hole concentration 

µe is the mobility of electrons 

µh is the mobility of holes 
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