USN										
-----	--	--	--	--	--	--	--	--	--	--

Internal Assessment Test III– March 2022	
--	--

Cub	Coloribus and I	Differential T	anotiona			Sub Cada	21MATT11				
Sub:	: Calculus and Differential Equations Sub Code: 21MAT11						21MA111				
Date:	28/03/2022	Duration:	90 mins	Max.marks	50	Sem/Sec:	I to O (CHEM C	CYCLE)	0	OBE	
	Questic	on 1 is compu	lsory and a	nswer any SIX	questio	ns from the 1	est.	MARKS	CO	RBT	
1.	Find the extrem	ne values of	the function	on: $f(x, y) =$	$x^{3} + 1$	$y^3 - 3x - 1$	2v + 20.	[08]	CO2	L3	
2.	Solve : xyp^2 –	$-(x^2+y^2)^2$	p + xy = 0).				[07]	CO5	L3	
								[07]	CO2	L3	
3.	If the air is ma 60° C in 12 mit 48° C.						from 80 [°] C to a temperature of				

USN	
-----	--

Internal Assessment Test III – January 2022

Sub:	ub: Calculus and Differential Equations			Sub Code:	21MAT11					
Date:	28/03/2022 Duration: 90 mins Max.marks 50					Sem/Sec:	I to O (CHEM C	CYCLE)	0	BE
	Questio	on 1 is compu	lsory and an	iswer any SIX	questio	ns from the r	est.	MARKS	CO	RBT
1.	Find the extrem	ne values of	the functio	n: $f(x, y) =$	$x^{3} + y$	$y^3 - 3x - 1$	2y + 20.	[08]	CO2	L3
2.	Solve : xyp^2 –	$-(x^2+y^2)$	v + xv = 0					[07]	CO5	L3
								[07]	CO2	L3
3.	If the air is ma 60° C in 12 mi 48° C.			1		•	from 80 [°] C to a temperature of			

4 Solve $(8xy - 9y^2)dx + 2(x^2 - 3xy)dy = 0$	[07]	CO3 L3	
Solve: $rsin\theta - cos\theta \frac{dr}{d\theta} = r^2$	[07]	CO3 L3	
⁶ If $x + y + z = u$, $y + z = uv$, $z = uvw$ show that $\frac{\partial(x, y, z)}{\partial(u, v, w)} = u^2 v$.	[07]	CO2 L3	
7. Show that the family of curves $x^2 = 4a(y + a)$ is self orthogonal.	[07]	CO2 L3	
8. If $u = f\left(\frac{y-x}{xy}, \frac{z-x}{xz}\right)$, find $x^2 \frac{\partial u}{\partial x} + y^2 \frac{du}{dy} + z^2 \frac{\partial u}{\partial z}$.	[07]	CO2 L3	_

4.	Solve $(8xy - 9y^2)dx + 2(x^2 - 3xy)dy = 0$	[07]	CO3	L3
5.	Solve $rsin\theta - cos\theta \frac{dr}{d\theta} = r^2$	[07]	CO3	L3
	If $x + y + z = u, y + z = uv, z = uvw$ show that $\frac{\partial(x, y, z)}{\partial(u, v, w)} = u^2 v$.	[07]	CO2	L3
7.	Show that the family of curves $x^2 = 4a(y + a)$ is self orthogonal.	[07]	CO2	L3
7.	Show that the family of curves $x^2 = 4a(y + a)$ is sen orthogonal.	[07]	02	LJ
8.	If $u = f\left(\frac{y-x}{xy}, \frac{z-x}{xz}\right)$, find $x^2 \frac{\partial u}{\partial x} + y^2 \frac{du}{dy} + z^2 \frac{\partial u}{\partial z}$.	[07]	CO2	L3

IAT-III Solutions (Chem cycle) 1. $f(x, y) = x^3 + y^3 - 3x - 12y + 20$ faz 3x2-3 fy = 3yr - 12. We shall find points (2, y) such that fx 20 and fy 20. =) 3 x - 3 z 0 and 3 y - 12 = 0. 3 xt 2 3 and Syt 2 12 Z) x z1 and y z4 =) uzt I and yz ± Jy = ± 2. 2) 2 1 1 .: (1,2), (1,-2), (-1,2), (-1,-2) are the critical l: fanzba poents. Onse (i):- (1,2) Sz fny 20 22670 ta fyg 2 by. 520 Ez 12 Rt-S2 7270 (1,2) is a point of minimum and the minimum value is f(1,2) 2 1+8-3-24+2022. Case (ii):- (1,-2) l26, S=0, tz-12 and Rt-52 z-7250.

: (1,-2) is a saddle point. Cerse (ici):- (-1,2) l2-6, S20, €212, lE-S2-7250 : (-1, 2) és a saddle point (ase (iv) :- (-1, -2) Rz-6<0, Sz0, fz-12, Rt-s= 7270. (-1, -2) és a pocul-of maximum. Maximum value és f(-1, -2) z -1-8+3+24+20 z 38. 2. $\chi y \beta^2 - (\chi^2 + \gamma^2)\beta + \chi \gamma^2 0$ $\int_{2}^{2} (x + y^{T}) \pm \sqrt{(x + y^{T})^{2} - 4x^{T}y^{2}}$ 2 ay $\int z \left(x^2 + y^2 \right) \pm \left(x^2 - y^2 \right)$ $\frac{1}{p} = \chi^2 + \chi^2 + \chi^2 - \chi^2 = \chi^2$ 2 ny dy z n =) ydy z ndn du y Juletrating Inlequating, y = x + c =) (y - 2t) = 2C

=) $(\gamma^{r} - \chi^{r} - \lambda^{r})_{i} 0$ p = n+y- +y = y 2 x y dy y = idy id da Inlegrating, we get logy 2 log x + log c = logy. logex = logy-logex 20. $=) \log\left(\frac{y}{Cx}\right) = 0 = \frac{y}{Cx} = 1$ = y-cx20. The general sob is (y² - 2 - 2 c) (y - c 2 - 2 0. We have by dala, t, 280°C, t2: 30°C and Tz 60°C in Ez12 mins. By Newton's law of cooling, $T_2 t_2 + (t_1 - t_2) e^{-kt}$ Tz 30+ (80-30) e-kt T2 30+50e-6t _ (). Géven 7260 when t212;

Mz 8ny - gyd and Nz 2n2 - 6ny 4. dM 28x-18y and DN 24x-6y dy 28x-18y and DN : <u>AM</u> - AN 2 4x - 12y 2 4(x - 3y) - near 6N. Now, $\frac{1}{N}\left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}\right) = \frac{4(x-3y)}{2x(x-3y)} = \frac{2}{x} = f(x)$ Hence, $I.F_z e^{\int f(x) dx} = \int_{\pi}^{2} dx = \int_{\pi}^{2} dx$ $z e^{2\log n} z n^2$. Multiplying the given of by 2², M28xy-9xy2 and N22x - 6xy dM 282 - 182 y and dN 282 - 182 y The soly is (Mdx+ SN(y) dy 2C-[[8 x y - 9 2 y 2] du + fo. dy 2 C $=) 2x^{4}y - 3x^{8}y^{2}z^{2}c$

5.
$$l \sin \theta - \cos \theta \frac{dk}{d\theta} = k^{2}$$

=) $\cos \theta \frac{dk}{d\theta} - k \sin \theta = -k^{2}$
 $= k^{2}, \quad \frac{\cos \theta}{k^{2}} \frac{dk}{d\theta} - \frac{1}{k} \sin \theta = -1.$ (D)
Put $\frac{1}{k} = \frac{k}{k^{2}}$
 $-\frac{1}{k^{2}} \frac{dk}{d\theta} = \frac{dt}{d\theta}$
(D) =) $-\cos \theta \frac{dt}{d\theta} - y \sin \theta = -1$
=) $\frac{dt}{d\theta} + Cton \theta$ y = $\sec \theta$; linear in y.
P = $\tan \theta$, Q = $\sec \theta$
 $2 \cdot f = e^{\int P d\theta} = e^{\int tam \theta d\theta} = \log (\sec \theta)$
 $2 \cdot f = e^{\int P d\theta} = e^{\int tam \theta d\theta} = \log (\sec \theta)$
 $2 \cdot f = e^{\int P d\theta} = e^{\int tam \theta d\theta} = \log (\sec \theta)$
 $2 \cdot f = e^{\int P d\theta} = e^{\int tam \theta d\theta} = \log (\sec \theta)$
 $2 \cdot f = e^{\int P d\theta} = e^{\int tam \theta d\theta} = \log (\sec \theta)$
 $2 \cdot f = e^{\int P d\theta} = e^{\int tam \theta d\theta} = \log (\sec \theta)$
 $2 \cdot f = e^{\int P d\theta} = e^{\int tam \theta d\theta} = e^{\int ta$

6. x+y+z.u, y+z.u, z.uvw. To prove: $\frac{\partial(u, y, g)}{\partial(u, v, w)} = u^2 v$. y+8= uv R+y+zell =) y+ uv w = uv =) n+uvell = y=uv-uvw =) x. U-UV Dr Dr DV DW $\partial(\mathcal{H}, \mathcal{Y}, \mathcal{Z})$ $\partial(\mathcal{H}, \mathcal{V}, \mathcal{W})^{2}$ $\partial\mathcal{Y}$ 2y dy dy dy $\frac{\partial \mathcal{E}}{\partial \mathcal{E}}$ $\frac{\partial \mathcal{E}}{\partial \mathcal{E}}$ $\frac{\partial \mathcal{E}}{\partial \mathcal{E}}$ $\frac{\partial \mathcal{E}}{\partial \mathcal{E}}$ $z \left(\begin{array}{ccc} l - v & -u \\ v - vw & u - uw \end{array} \right)$ - uv uv uw NW $= (1-v) \left[(u-u\omega)(uv) + u^{2}v\omega \right]$ $+ u \left[uv(v - vw) + uvw \right]$ $e(1-v)\left[m^{e}v - u^{e}\sqrt{w} + u^{e}\sqrt{w}\right]$ + m [iev - up w + up w] $z \mu^2 V - \mu^2 V^2 + \mu^2 V^2 = \mu^2 V.$

7. $\chi^* = 4a(y+a) - 0$ Diff wat n, 2x 2 4 ay =) y, 2 2 =) a 2 2 y O becomes $x^2 \cdot \frac{y}{x} \left(\frac{\pi}{x}y\right) \left(\frac{y}{y} + \frac{\pi}{z}y\right)$ $\frac{\pi^2}{2} \frac{2\pi}{\frac{y}{1}} \left(\frac{y+\frac{\pi}{2y}}{\frac{2y}{1}} \right).$ 2 2 2 2 2 y + 2 2 2 y 2 y 2 y 2 =) xy z Luyy, + x - differential eg of the given family. Replacing y, by - y, $=) 2 \left(\frac{-1}{4} \right)^{2} 2 2 2 \left(\frac{-1}{4} \right) + 2^{2}$ $=) \frac{\chi}{\gamma^2} = -\frac{2\chi\gamma}{\gamma} + \chi$ $=) \frac{\pi^2}{y_1^2} = -\frac{2\pi y + \pi y_1}{y_1}$ $z) n^{2} z - 2n y y + n_{2} y ^{2}$

=) Ry 2 = 2Ryy, + 2 - differential eg' of D. E of OF is sames as that of the given family O . O is self-orthogonal. $\mathcal{U} = f\left(\frac{y-\varkappa}{\varkappa y}, \frac{s-\varkappa}{s^{\varkappa}}\right).$ Let Pz y-n z 1 - 1 ny x y Q 2 3-x 2 1-1 32 x 3. $\frac{\partial u}{\partial \mathcal{R}} = \frac{\partial u}{\partial P} \times \frac{\partial P}{\partial \mathcal{R}} + \frac{\partial u}{\partial Q} \times \frac{\partial Q}{\partial \mathcal{R}}$ $= \frac{\partial u}{\partial p} \left(\frac{-1}{\chi^2} \right) + \frac{\partial u}{\partial Q} \left(\frac{-1}{\chi^2} \right)$ $\frac{\partial u}{\partial y} = \frac{\partial u}{\partial p} = \frac{\partial p}{\partial y} = \frac{\partial u}{\partial p} \left(\frac{1}{y^2} \right)$ $\frac{\partial u}{\partial \zeta} = \frac{\partial u}{\partial \varphi} \cdot \frac{\partial Q}{\partial \zeta} = \frac{\partial u}{\partial \varphi} \cdot \left(\frac{1}{\zeta^2}\right).$ Now, 2² du + y² du + 3² du

 $z = \frac{2}{2} \left[\frac{-1}{2} \frac{\partial u}{\partial p} - \frac{1}{2} \frac{\partial u}{\partial q} \right]$ $+ y^{2} \left[\frac{1}{y^{2}} \frac{\partial u}{\partial p} \right] + g^{2} \left[\frac{1}{g^{2}} \frac{\partial u}{\partial q} \right]$ $z - \frac{\partial u}{\partial p} - \frac{\partial u}{\partial \varphi} + \frac{\partial u}{\partial p} + \frac{\partial u}{\partial \varphi}$