Scheme of Evaluation

Internal Assessment Test 4 — Feb 2022

Sub: Unix Programming Code: 18CS56
Max . .
Date: | 7/2/2022 Duration: | 90mins | Marks: | 50 sem: |V Branch: ISE
Note: Answer Any five full questions.
Question Description Marks Distribution Max
Marks
Describe the following commands with
examples:
od, mv, cp, rm, cd
1 Each command syntax, usage and example 2M*5 10M 10M
a) Write a short note on man documentation M
Syntax
2) 2M 5M
Explanation
2M
Example
. 10M
b) Identify the contents of /etc/passwd and
/etc/shadow file with respect to UNIX OS.
2 Contents of /etc/passwd 2M 5M
Contents of /etc/shadow 2.5M
a) Briefly describe the significance of the seven
fields of Is —I command 1M
3 5M
Syntax 4M
Seven field explanation
10M
b) Explain the concept of Escaping and Quoting
with suitable example 2 5M
3 : . 5M
Escaping example and explanation 2 5M
Quoting example and explanation

a) Describe for loop, also possible sources of

argument list. 1M

Syntax 2M 5M

Example 2M

Possible sources

10M

b) Describe logical operations in shell

programming with example. M

AND 2M 5M

OR 1M

NOT
a) Discuss the API which helps a user to query or

set flags with suitable example. 1M

fentl() api syntax M 5M

flags explanation oM

example

10M

b) Describe the functions which retrieve the file

attributes of a given file with suitable example.

. : 2.5M
stat() api syntax, explanation, example 5M
. . 2.5M

fstat() api syntax, explanation, example
a) Discuss the system calls used to create and

delete a new link to an existing file with suitable

examples. 3M

link ()api syntax, explanation 3M 10M

unlink() api syntax, explanation M

Example

Q. 1 Describe the following commands with examples:
od, mv, cp, rm, cd

cp: copying a file
¢ ¢pcommand copies a file or a group of files.it creates an exact image of the file on the disk with
the different name.
+ The syntax requires atleast two filenames to be specified in the command line.

* When both are ordinary files, the first is copied to second file.
cp source file destination file

cp chap01 unitl

if destination file i.e unitl does not exist, first it will be created before copying.if not it will
be simply overwritten without any warning.

Copying a file to another directory

ex: assume there is a file named chap01 and it has to be copied to progs directory

cp chap01 progs

output: chap01 is now copied to directory named progs with the same name chapOl1.
rm : deleting files

The rm command deletes one or more files.
Ex 1: The following command deletes three files chap01, chap02, chap03.
$ rm chap01 chap02 chap(03
Ex 2: to delete files named chap01 and chap02 under progs directory
$ rm progs/chap01 progs/chap02
Ex 3: to remove all file
$ rm*

mv: RENAMING FILES.
The mv command renames or moves files. It has two distinct functions:

h. It renames a file or directory
i. itmoves a group of files to a different directory

To rename a file chap01 to man01

$ mv chap01 man01
mv replace the filename in the existing directory entry with the new name.

No additional space is consumed on disk during renaming.

To rename a directory:
$ mv pts perdir
pts directory is renamed as perdir

od Command: DISPLAYING DATA IN OCTAL.
$ cat odfile

White space includes a
The ~G character rings a bell

$ od -b odfile
The -b option displays the octal values for each character.
000000 127 150 151 164 145 040 163 160 141 143 145040 151 156 143 154
000000 165 144 145 163 040 141 040 011 012 124 150 145 040 007 040 143
Each line displays 16 bytes of data in octal . preceded by the offset in the file of the first byte in the
line.
$od -be odfile
The -b and -c option combined
Each line is now replaced with two.

The octal values are shown in first line and printable characters and escape sequences are shown in
second line

000000127 150 151 164 145 040 163 160 141 143 145 040 151
W h i t e S i
156 143 154
n c |

P a c e i

Q.2 a) Write a short note on man documentation

THE MAN COMMAND

The man command knowing more about Unix commands and using Unix online manual
pages

man is the system's manual viewer; it can be used to display manual pages, scroll up and down,
search for occurrences of specific text, and other useful functions.

Each argument given to man is normally the name of a program, utility or function. The manual
page associated with each of these arguments is then found and displayed. A section number,
if provided, will direct man to look only in that section of the manual. The default action is to
search in all of the available sections, following a pre-defined order and to show only the first
page found, even if page ex- ists in several sections.

A man page is divided into a number of compulsory optional sections. Every command doesn’t
have all sections, but the first three(NAME,SYNOPSIS and DESCRIPTION) are seen in all
man pages.

NAME presents the online introduction to the command

SYNOPSIS shows the syntax used by the command

DESCRIPTION provides a detailed information.

Options

-K.-- Search for text in all manual pages.
Section Numbers

The section numbers of the manual are listed below. While reading documentation, if you see
a com- mand name followed by a number in parentheses, the number refers to one of these
Man Examples

$man man

View the manual page for the man command.

$man —s4 passwd
This displays the documentation for a configuration file from the section 4. Even this information is

present in the section 1 1t won’t display section 1 information.

Q. 2 b) ldentify the contents of /etc/passwd and /etc/shadow file with respect to UNIX OS.

The /etc/passwd file is the most important file in Linux operating system. This file stores
essential information about the users on the system. This file is owned by the root user and to
edit this file we must have root privileges.

This file contains one entry per line. That means it stores one user’s information on one line. o
Username: This field stores the usernames which are used while login into the system. The
length of this field is between 1 and 32 characters.

e Password: This field store the password of the user. The x character indicates the password is
stored in /etc/shadow file in the encrypted format. We can use the passwd command to update
this field.

e User ID(UID): User identifier is the number assigned to each user by the operating system to
refer the users. The O UID is reserved for the root user. And 1-99 UID are reserved for other
predefined accounts. And 100-999 are reserved by the system for administrative and system
accounts/groups.

e Group ID(GID): Group identifier is the number indicating the primary group of users. Most
of the time it is the same as the UID.

e User ID Info (GECOS): This is a comment field. This field contains information like the user
phone number, address, or full name of the user. This field is used by the finger command to get
information about the user.

e Home directory: This field contains the absolute path of the user’s home directory. By
default, the users are created under the /home directory. If this file is empty, then the home
directory of that user will be /

e Login shell: This field store the absolute path of the user shell. This shell is started when the
user is log in to the system.

The /etc/shadow file contains one entry per line, each representing a user account. You can
view the contents of the file.
mark:6.n.:17736:0:99999:7:::

[] [] - []

| ||| I+ > 9. Unused

| | | |+--------- > 8. Expiration date

| | | [+ > 7. Inactivity period

| | | +---m-mmmmmme- > 6. Warning period

I > 5. Maximum password age
| A-mmmmmmmmmm e > 4. Minimum password age
Fommmmem e > 3. Last password change
Ao > 2. Encrypted Password
Fommmm oo > 1. Username

https://www.geeksforgeeks.org/finger-command-in-linux-with-examples/

Q. 3 a) Briefly describe the significance of the seven fields of Is —-| command

Is COMMAND

The Is command lists all files in the directory that match the name. If name is left blank, it will

list all of the files in the directory.

Syntax

The syntax for the Is command is:

Is [options] [names]

Option Description
-a Displays all files.
-b Displays nonprinting characters in octal.
-C Displays files by file timestamp.
-C Displays files in a columnar format (default)
15 birv vy roip 1iouiig MAIULAMLIVIE WUV LAY ALIT e -
Sis -l
total 1340

-rwxrwxr-x 1 vizion vizion 6961 2015-09-17 16:17 a.out

a. Field 1:
= st Character — File Type: First character specifies the type of the file. In the example
above the hyphen (-) in the 1st character indicates that this is a normal file. Following are
the possible file type options in the 1st character of the Is -1 output.
e Field Explanation
e —nomal file
e ddirectory
e ssocket file
e |link file
= 2nd to 9th character -- File Permissions: Next 9 character specifies the files permission.
Each 3 characters refers to the read, write, execute permissions for owner, group and other.
b.Field 2 — Number of links: Second field specifies the number of links for that file. In this example, 1
indicates only one hink to this file ggos.¢ and 2 links to directory named fedora
c.Field 3 — Owner: Third field specifies owner of the file. In this example, ecps ¢ file 1s owned by
username “Yizion
d. Field 4 — Group: Fourth field specifies the group of the file. In this example, the file ggos.c belongs
to “yizion group.
e. Field 5 — Size: Fifth field specifies the size of file. In this example, “1129” indicates the eggs g file
size.
f. Field 6 — Last modified date & time: Sixth field specifies the date and time of the last modification
of the file.

g. Field 7 — File name: The last field is the name of the file.

Q. 3b) Explain the concept of Escaping and Quoting with suitable example

REMOVING THE SPECIAL MEANINGS OF WILD CARDS

ESCAPING and QUOTING
Escaping: providing a \(backslash character) before the wild card to remove or escape its

special meaning.
Quoting: enclosing the wild card or even the entire pattern within quotes ('chap* '). Anyting

within the quotes are left alone by the shell and not interpreted.

ESCAPING
e Placing a \ immediately before a metacharacter turns off its special meaning.

e Forinstance * , matches * itself. Its special meaning of matching zero or more occurrencesof

character is turned off.

Ex1:

$rm chap*
removes all the filenames starting with chap. Chap, chap01.,chap02 and chap03 are removed.

$rm chap* // * metacharacter meaning is turned off
removes the filename with chap* /*name of the file itself is chap*.
QUOTING:

e This is the another way of turning off the meaning of metacharacter.
e When a command argument is enclosed within quotes, the meaning of all enclosed special

characters are turned off

$rm 'chap*' /I * metacharacter meaning is turned off

removes the filename with chap* /*name of the file itselfis chap*.

$rm "My\ document.doc" /* Toremove the file My document.doc, which has

Q. 4a) Describe for loop, also possible sources of argument list.

for : LOOPING WITH ALIST
The shells for loop differs in structure from the ones used in other programming languages.

There is no three part structure.

for variables in list
do
commands
done
The loop body also uses the keyword do and done. But the additional parameters here are variable and

list. Each whitespace separated word in list is assigned to variable and commands are executed until list

is executed .

Ex:

Sfor file in chap20 chap21 chap22

do

cp $file {S$file}.bak

echo $file copied to $file.bak

done
Output:
chap20 copied to chap20.bak
chap21 copied to chap21.bak
chap22 copied to chap22.bak

Secho “\$1 is $1,\52 is $2,\S3 is $3”
Output: $1 1s 989, $2 is 878, $3 1s 779

Secho “The $# arguments are $*”
Output: The 3 arguments are 989 878 779

Q.4 b) Describe logical operations in shell programming with example.

THE LOGICAL OPERATORS && and || - CONDITIONAL EXECUTION
* The shell provides two operators that allow conditional execution.the && and ||.
+ The syntax:

cmd]l && emd2
cmdl || emd2

* Consider a file emp.Ist

Scat emp.Ist

1066| sharma | director |sales [03/09/66 | 7000
1098| Kumar |director| production|0/08/67 | §200
1082|sumith| manager/marketing|09/09/73| 7090

* The && delimits two commands ; the command cmd? is executed only when cmd] succeeds

S grep “director” emp.Ist && echo “Pattern found in file”

Output:

1066| sharma | director |sales |03/09/66 | 7000
1098| Kumar |director| production|0/08/67 | 8200

— ~ - -

Sgrep “ deputy manager” emp.lst || echo “Pattern not found”
Output:

Pattern not found /* cmd1 -deputy manager is not found in emp.lst.

Hence cmdl fails. Therefore cmd?2 “pattern not found”

executes.

Q. 5a) Discuss the API which helps a user to query or set flags with suitable example.

s+ fentl
e The fentl function helps a user to query or set flags and the close-on-exec flag of any file descriptor.
s The prototype of fentl is

#include<fecntl.h>
int fentl(int fdesc, int cmd, ..):

& The first argument is the file descriptor.

e The second argument cmd specifies what operation has to be performed.
e The third argument is dependent on the actual cmd value.

The possible cmd values are defined in <fcntl.h> header.

F_GETFL Returns the access control flags of a file descriptor fdesc

F_SETFL Sets or clears access control flags that are specified in the third argument to
fentl. The allowed access control flags are O APPEND & O NONBLOCK

F_GETFD Returns the close-on-exec flag of a file referenced by fdesc. If a return value is
zero, the flag is off; otherwise on.

F_SETFD Sets or clears the close-on-exec flag of a fdesc. The third argument to fcntl is
an integer value, which is 0 to clear the flag, or 1 to set the flag

F_DUPFD Duplicates file descriptor fdesc with another file descriptor. The third argument
to fentl is an integer value which specifies that the duplicated file descriptor must
be greater than or equal to that value. The return value of
fentl is the duplicated file descriptor

The fentl function is useful in changing the access control flag of a file descriptor.

e For example: after a file is opened for blocking read-write access and the process needs to change
the access to non-blocking and in write-append mode, it can call:

int cur_flags=fentl(fdese,F _GETFL);
int re=fentl(fdesc,F_SETFL,cur_flag | O_APPEND | O_NONBLOCK);

The following statements change the standard input og a process to a file called FOO:
int fdese=open(“FOO”,0_RDONLY); //open FOO for read

close(0); f/close standard input
if(fentl(fdese,F_ DUPFD,0)==1)

perror(“fentl™); //stdin from FOO now

char buf]256];

int re=read(0,buf,256); //read data from FOO

Q.

5 b) Describe the functions which retrieve the file attributes of a given file with suitable

example.

% stat, fstat

e The stat and fstat function retrieves the file attributes of a given file.

¢ The only difference between stat and fstat is that the first argument of a stat is a file pathname, where
as the first argument of fstat is file descriptor.

e The prototypes of these functions are

#include<sys/stat.h>
#include<unistd.h>

int stat(const char *pathname, struct stat *statv);
int fstat(const int fdesc, struct stat *statv);

The second argument to stat and fstat is the address of a struct stat-typed variable which is defined in
the

o <sys/stath> header.
Its declaration is as follows:

struct stat

{

dev_t st_dev; /* file system ID */

ino t st_ino; /* file inode number */

mode t st_mode; /* contains file type and permission */
nlink t st_nlink; /* hard link count */

uid _t st_uid; /* file user ID */

gid_t st_gid; /* file group ID */

dev_t st_rdev; /*contains major and minor device#*/
off t st_size; /* file size in bytes */

time t st_atime; /* last access time */

time t st_mtime; /* last modification time */

time_t st_ctime; /* last status change time */

)3

e The return value of both functions is
o 0ifthey succeed
o -1 ifthey fail
o errno contains an error status code
e The Istat function prototype is the same as that of stat:
int lstat(const char * path name, struct stat* statv);

e We can determine the file type with the macros as shown.

Q. 6 a) Discuss the system calls used to create and delete a new link to an existing file with
suitable examples.

+ link

unlink

The link function creates a new link for the existing file.
The prototype of the link function is

#include <unistd.h>
int link(const char *cur link, const char *new link):;

If successful, the link function returns 0.

If unsuccessful, link returns —1.

The first argument cur link, is the pathname of existing file.

The second argument new_link is a new pathname to be assigned to the same file.
If this call succeeds, the hard link count will be increased by 1.

The UNIX In command is implemented using the link APIL.

The unlink function deletes a link of an existing file.

This function decreases the hard link count attributes of the named file, and removes the file name
entry of the link from directory file.

A file is removed from the file system when its hard link count is zero and no process has any file
descriptor referencing that file.

The prototype of unlink is

#include <unistd.h>
int unlink(econst char * cur link);

If successful, the unlink function returns 0.

If unsuccessful, unlink returns —1.

The argument cur link is a path name that references an existing file.

ANSI C defines the rename function which does the similar unlink operation.
The prototype of the rename function is:

The UNIX mv command can be implemented using the link and unlink APIs as shown:
#include <iostream.h>
#include <unistd.h>
#include<string.h>
int main (int arge, char *argv[])
{
if (arge =3 || stremp(argv[1],argev][2]))
cerr<<”usage:”<<argv[0]<<""<old_link><new_link>\
Il”;
else if(link(argv[l],argv[2) = 0)
return unlink(argv[1]);
return 1;

