

USN

Internal Assessment Test 4 – Feb 2022

Sub: Web Technology & its Applications Sub Code:
15CS71 /

17CS71
Branch: CSE

Date: 01-02-2022 Duration: 90 min’s Max Marks: 50 Sem / Sec: D OBE

Answer any FIVE FULL Questions MARKS CO RBT

1 (a) Explain the following HTML5 tags with example.

(i) headings (ii)paragraphs (iii)Inline elements (iv)image (v) divisions

(i) headings: HTML provides six levels of heading (h1 through h6), with the

higher heading number indicating a heading of less importance. Headings are

also used by the browser to create a document outline for the page.

Example:

<h1>Share Your Travels</h1>

<h2>New York - Central Park</h2>

(ii)paragraphs: It is the most basic unit of text in an HTML document. Notice

that the <p> tag is a container and can contain HTML and other inline HTML

elements. This term refers to HTML elements that do not cause a paragraph

break but are part of the regular “flow” of the text.

Example:

<p>Photo by Randy Connolly</p>

<p>This photo of Conservatory Pond in Central Park

New York City was taken on October 22, 2015 with a Canon EOS

30D camera.

</p>

(iii)Inline elements:They do not disrupt the flow of text (i.e., cause a line

break). HTML defines over 30 of these elements. Few are as follows:

iv)image: defines an image. It defines the following:

[05] CO1 L2

(v)time: Used to represent time.

Example:

<p>By Susan on <time>October 1, 2015</time></p>

(vi) divisions:

This element is a container element and is used to create a logical grouping
of content (text and other HTML elements, including containers such as <p>
and other <div> elements). The <div> element has no intrinsic presentation;
it is frequently used in contemporary CSS-based layouts to mark out
sections.

Example:

<div>

<p>By Ricardo on <time>September 15, 2015</time></p>

<p>Easy on the HDR buddy.</p>

</div>

<div>

<p>By Susan on <time>October 1, 2015</time></p>

<p>I love Central Park.</p>

</div>

<p><small>Copyright © 2015 Share Your Travels</small></p>

</body>

 (b) Explain the following in brief with example.

(i) Links to destination (ii) URL referencing

(i) Links to destination:

The use the anchor element to create a wide range of links. These include:

■ Links to external sites (or to individual resources such as images or movies

on an external site).

■ Links to other pages or resources within the current site.

■ Links to other places within the current page.

■ Links to particular locations on another page (whether on the same site or on

an external site).

■ Links that are instructions to the browser to start the user’s email program.

■ Links that are instructions to the browser to execute a JavaScript function.

■ Links that are instructions to the mobile browser to make a phone call.

[05] CO1 L2

(i) URL referencing:

Whether we are constructing links with the <a> element, referencing

images with the element, or including external JavaScript or

CSS files, we need to be able to successfully reference files within

our site. This requires learning the syntax for so-called relative

referencing.

When referencing a page or resource on an external site, a full

absolute reference is required: that is, a complete URL as described

in Chapter 1 with a protocol (typically, http://), the domain name,

any paths, and then finally the file name of the desired resource.

However, when referencing a resource that is on the same server as

your HTML document, you can use briefer relative referencing. If

the URL does not include the “http://” then the browser will request

the current server for the file. If all the resources for the site reside

within the same directory (also referred to as a folder), then you

can reference those other resources simply via their file name.

However, most real-world sites contain too many files to put them

all within a single directory. For these situations, a relative pathname

is required along with the file name. The pathname tells the browser

where to locate the file on the server.

Pathnames on the web follow Unix conventions. Forward slashes

(“/”) are used to separate directory names from each other and from

file names. Double-periods. (“..”) are used to reference a directory

“above” the current one in the directory tree.

The different types of URL referencing are:

2 (a) Explain Location of styles with examples.

CSS style rules can be located in three different locations.

1. Inline Styles

Inline styles are style rules placed within an HTML element via the style

attribute,An inline style only affects the element it is defined within and

overrides any other style definitions for properties used in the inline style.

Using inline styles is generally discouraged since they increase bandwidth and

decrease maintainability (because presentation and content are intermixed and

because it can be difficult to make consistent inline style changes across

multiple files.

Internal styles example:

<h1>Share Your Travels</h1>

<h2>style="font-size: 24pt"Description</h2>

...

<h2>style="font-size: 24pt; font-weight: bold;">Reviews</h2>

2. Embedded Style Sheet

Embedded style sheets (also called internal styles) are style rules placed

within the <style> element (inside the <head> element of an HTML

document), While better than inline styles, using embedded styles is also by

and large discouraged. Since each HTML document has its own <style>

element, it is more difficult to consistently style multiple documents when

using embedded styles.

Just as with inline styles, embedded styles can, however, be helpful when

[05] CO3 L2

quickly testing out a style that is used in multiple places within a single HTML

document.

 Example:

<title>Share Your Travels -- New York - Central Park</title>

<style>

h1 { font-size: 24pt; }

h2 {

font-size: 18pt;

font-weight: bold;

}

</style>

</head>

<body>

<h1>Share Your Travels</h1>

<h2>New York - Central Park</h2>

...

3. External Style Sheet

External style sheets are style rules placed within a external text file with the

.css extension. This is by far the most common place to locate style rules

because it provides the best maintainability. When you make a change to an

external style sheet, all HTML documents that reference that style sheet will

automatically use the updated version. The browser is able to cache the

external style sheet, which can improve the performance of the site as well.

To reference an external style sheet, you must use a <link> element (within the

<head> element),We can link to several style sheets at a time; each linked

style sheet will require its own <link> element.

Example:

<head lang="en">

<meta charset="utf-8">

<title>Share Your Travels -- New York - Central Park</title>

<link rel="stylesheet" href="styles.css" />

</head>

 (b) Explain how CSS styles interact.

The “Cascade” in CSS refers to how conflicting rules are handled. The visual

metaphor behind the term cascade is that of a mountain stream progressing

downstream over rocks (and not that of a popular dishwashing detergent). The

downward movement of water down a cascade is meant to be analogous to how

a given style rule will continue to take precedence with child elements (i.e.,

elements “below” in a document outline as shown in Figure 3.3).

CSS uses the following cascade principles to help it deal with conflicts:

inheritance, specificity, and location.

3.5.1 Inheritance

Inheritance is the first of these cascading principles. Many (but not all) CSS

properties affect not only themselves but their descendants as well. Font, color,

list, and text properties (from Table 3.1) are inheritable; layout, sizing, border,

background, and spacing properties are not.

Figures 3.9 and 3.10 illustrate CSS inheritance. In the first example, only some

[05] CO3 L2

of the property rules are inherited for the <body> element. That is, only the body

element (thankfully!) will have a thick green border and the 100-px margin;

however, all the text in the other elements in the document will be in the Arial

font and colored red.

In the second example in Figure 3.10, you can assume there is no longer the

body styling but instead we have a single style rule that styles all the <div>

elements. The <p> and <time> elements within the <div> inherit the bold font-

weight property but not the margin or border styles. However, it is possible to

tell elements to inherit properties that are normally not inheritable, as shown in

Figure 3.11. In comparison to Figure 3.10, notice how the <p> elements nested

within the <div> elements now inherit the border and margins of their parent.

3.5.2 Specificity

Specificity is how the browser determines which style rule takes precedence

when more than one style rule could be applied to the same element. In CSS, the

more specific the selector, the more it takes precedence (i.e., overrides the

previous definition).

As you can see in Figure 3.12, class selectors take precedence over element

selectors, and id selectors take precedence over class selectors. The precise

algorithm the browser is supposed to use to determine specificity is quite

complex.6 A simplified version is shown in Figure 3.13.

3.5.3 Location

Finally, when inheritance and specificity cannot determine style precedence, the

principle of location will be used. The principle of location is that when rules

have the same specificity, then the latest are given more weight. For instance, an

inline style will override one defined in an external author style sheet or an

embedded style sheet.

3 (a) List the different selectors available in CSS and explain in detail

1 Element Selectors

Element selectors select all instances of a given HTML elementYou

can select all elements by using the universal element selector,

which is the * (asterisk) character. You can select a group of

elements by separating the different element names with commas.

This is a sensible way to reduce the size and complexity of your CSS

files, by combining multiple identical rules into a single rule.

Class Selectors

A class selector allows you to simultaneously target different HTML elements

regardless of their position in the document tree. If a series of HTML elements

have been labeled with the same class attribute value, then you can target them

for styling by using a class selector, which takes the form: period (.) followed by

the class name.

Listing 3.5 illustrates an example of styling using a class selector. The result in

the browser is shown in Figure 3.4.

then you can target it for styling by using an id selector, which takes the form:

pound/hash (#) followed by the id name. Listing 3.6 illustrates an example of

styling using an id selector. The result in the browser is shown in Figure 3.5.

[10] CO3 L2

3 Id Selectors

An id selector allows you to target a specific element by its id

attribute regardless of its type or position. If an HTML element has

been labeled with an id attribute, then you can target it for styling by

using an id selector, which takes the form: pound/hash (#) followed

by the id name.

4 Attribute Selectors

An attribute selector provides a way to select HTML elements

either by the presence of an element attribute or by the value of an

attribute. This can be a very powerful technique, but because of

uneven support by some of the browsers, not all web authors have

used them. Attribute selectors can be a very helpful technique in the

styling of hyperlinks and images. For instance, perhaps we want to

make it more obvious to the user when a pop-up tooltip is available

for a link or image. We can do this by using the following attribute

selector: [title] { … } This will match any element in the document

that has a title attribute.

5 Pseudo-Element and Pseudo-Class Selectors
A pseudo-element selector is a way to select something that does not exist

explicitly as an element in the HTML document tree but which is still a

recognizable selectable object. For instance, you can select the first line or first

letter of any HTML element using a pseudo-element selector. A pseudo-class

selector does apply to an HTML element, but targets either a particular state or,

in CSS3, a variety of family relationships. Table 3.5 lists some of the more

common pseudo-class and pseudoelement selectors. The most common use of

this type of selectors is for targeting link states. By default, the browser displays

link text blue and visited text links purple. Listing 3.8

illustrates the use of pseudo-class selectors to style not only the visited and

unvisited link colors, but also the hover color, which is the color of the link when

the mouse is over the link. Do be aware that this state does not occur on touch

screen devices.

Note the syntax of pseudo-class selectors: the colon (:) followed by the pseudo-

class selector name. Do be aware that a space is not allowed after the colon.

Believe it or not, the order of these pseudo-class elements is important. The :link

and :visited pseudo-classes should appear before the others. Some developers

use a mnemonic to help them remember the order. My favorite is “Lord Vader,

Former Handle Anakin” for Link, Visited, Focus, Hover, Active.

.

6 Contextual Selectors

A contextual selector (in CSS3 also called combinators) allows you

to select elements based on their ancestors, descendants, or siblings.

That is, it selects elements based on their context or their relation to

other elements in the document tree. While some of these contextual

selectors are used relatively infrequently, almost all

web authors find themselves using descendant selectors.A

descendant selector matches all elements that are contained within

another element. The character used to indicate descendant selection

is the space character.

Selector Matches Example

Descendant A specified element that is contained somewhere within

another specified element. div p Selects a <p> element that is

contained somewhere within a <div> element. That is, the <p> can

be any descendant, not just a child. Child A specified element that is

a direct child of the specified element.

div>h2

Selects an <h2> element that is a child of a <div> element.

Adjacent sibling A specified element that is the next sibling (i.e.,

comes directly after) of the specified element.

h3+p

Selects the first <p> after any <h3>. General sibling A specified

element that shares the same parent as the specified element.

h3~p

Selects all the <p> elements that share the same parent as the <h3>.

4 (a) Discuss positioning elements with examples
The position property is used to specify the type of positioning, and the

possible values are shown in Table 5.1. The left, right, top, and bottom

properties are used to indicate the distance the element will move; the effect

of these properties varies depending upon the position property.

Relative Positioning

In relative positioning an element is displaced out of its normal flow position

and moved relative to where it would have been placed. When an element is

positioned relatively, it is displaced out of its normal flow position and moved

relative to where it would have been placed. The other content around the

relatively positioned element

“remembers” the element’s old position in the flow; thus the space the

element would have occupied is preserved as shown in Figure 5.4.

Value Description

absolute The element is removed from normal flow and positioned in relation

to its nearest positioned ancestor.

fixed The element is fixed in a specific position in the window even when the

document is scrolled.

relative The element is moved relative to where it would be in the normal

flow.

static The element is positioned according to the normal flow. This is the

default.

table 5.1 Position Values

[10] CO3 L2

As you can see in Figure 5.4, the original space for the positioned <figure>

element is preserved, as is the rest of the document’s flow. As a consequence,

the repositioned element now overlaps other content: that is, the <p> element

following the <figure> element does not change to accommodate the moved

<figure>.

Absolute Positioning

When an element is positioned absolutely, it is removed completely from

normal flow. Thus, unlike with relative positioning, space is not left for the

moved element, as it is no longer in the normal flow. Its position is moved in

relation to its container block. In the example shown in Figure 5.5, the

container block is the <body> element.

Like with the relative positioning example, the moved block can now overlap

content in the underlying normal flow.

While this example is fairly clear, absolute positioning can get confusing. A

moved element via absolute position is actually positioned relative to its

nearest positioned ancestor container (that is, a block-level element whose

position is fixed, relative, or absolute). In the example shown in Figure 5.6,

the <figcaption> is absolutely positioned; it is moved 150 px down and 200

px to the left of its nearest positioned ancestor, which happens to be its parent

(the <figure> element).

5 (a) What does floating an element do in CSS? How do you float an

element?
Floating Elements:

• It is possible to displace an element out of its position in the normal flow

via the CSS float property.

• An element can be floated to the left or floated to the right.

• When an item is floated, it is moved all the way to the far left or far right

of its containing block and the rest of the content is “re-flowed” around

the floated element, as can be seen in Figure 5.9.

• Notice that a floated block-level element must have a width specified; if

you do not, then the width will be set to auto, which will mean it

implicitly fills the entire width of the containing block, and there thus

will be no room available to flow content around the floated item. Also

[05] CO4 L2

note in the final example in Figure 5.9 that the margins on the floated

element are respected by the content that surrounds the floated element.

Floating within a Container:

• It should be reiterated that a floated item moves to the left or right of its

container (also called its containing block). In Figure 5.9, the containing

block is the HTML document itself so the figure moves to the left or right

of the browser window.

 (b) Write short notes on graceful degradation and progressive enhancement. [05] CO3 L2

6 (a) Explain Grid systems in CSS with examples. [05] CO4 L2

 (b) Write short notes on CSS Layout. [05] CO2 L2

• One of the main problems faced by web designers is that the size of the screen used to view the page

can vary quite a bit.

• Some users will visit a site on a 21-inch wide screen monitor that can display 1920 × 1080 pixels

(px); others will visit it on an older iPhone with a 3.5 screen and a resolution of 320 × 480 px.

• Users with the large monitor might expect a site to take advantage of the extra size; users with the

small monitor will expect the site to scale to the smaller size and still be usable.

• Satisfying both users can be difficult; the approach to take for one type of site content might not

work as well with another site with different content.

• Basic models:

A. Fixed Layout:

• In a fixed layout, the basic width of the design is set by the designer.

• A common width used is something in the 960 to 1000 pixel range, which fits nicely in the common

desktop monitor resolution (1024 × 768).

• This content can then be positioned on the left or the center of the monitor.

• Fixed layouts are created using pixel units, typically with the entire content within a <div> container

whose width property set to some width.

<body>

<div id="wrapper">

<header>

...

</header>

<div id="main">

...

</div>

<footer>

...

</footer>

</div>

</body>

div#wrapper {

width: 960px;

background_color: tan;

}

The advantage of a fixed layout is that

a) It is easier to produce and generally has a predictable visual result.

b) It is also optimized for typical desktop monitors.

Fixed layouts have drawbacks:

c) For larger screens, there may be an excessive amount of blank space to the left and/or right of the

content.

d) Much worse is when the browser window shrinks below the fixed width; the user will have to

horizontally scroll to see all the content.

B. Liquid layout:

• In this approach, widths are not specified using pixels, but percentage values.

• Percentage values in CSS are a percentage of the current browser width, so a layout in which all

widths are expressed as percentages should adapt to any browser size.

Advantage of a liquid layout

• It adapts to different browser sizes, so there is neither wasted white space nor any need for horizontal

scrolling.

Disadvantage of a liquid layout

• Liquid layouts can be more difficult to create because some elements, such as images, have fixed

pixel sizes.

• Another problem will be noticeable as the screen grows or shrinks dramatically, in that the line

length (which is an important contributing factor to readability) may become too long or too short.

