
USN

Internal Assessment Test 5 – Feb. 2022

Sub: Web Technologies & its applications
Sub

Code:
17CS71 Branch: CSE

Date: 05-02-2022 Duration: 90 min’s Max Marks: 50
Sem /

Sec:
7 – D OBE

Answer any FIVE FULL Questions
MARKS CO RBT

1(a) How do you read or write a file on the server from PHP? Give

examples.

Reading/Writing Files

There are two basic techniques for read/writing files

in PHP:

■ Stream access. In this technique, our code will

read just a small portion of the file at a time. While

this does require more careful programming, it is the

most memory-efficient approach when reading very

large files.

■ All-In-Memory access. In this technique, we can

read the entire file into memory (i.e., into a PHP

variable). While not appropriate for large files, it

does make processing of the file extremely easy.

Stream Access

functions like fopen(), fclose(), and fgets() from the

C programming language,The function fopen() takes

a file location or URL and access mode as

parameters. The returned value is a stream

resource, which you can then read sequentially.

Some of the common modes are “r” for read, “rw”

for read and write, and “c,” which creates a new file

for writing.

Once the file is opened, you can read from it in

several ways. To read a single line, use the fgets()

[10] CO3 L2

function, which will return false if there is no more

data, and if it reads a line it will advance the stream

forward to the next one so you can use the ===

check to see if you have reached the end of the file.

To read an arbitrary amount of data (typically for

binary files), use fread() and for reading a single

character use fgetsc(). Finally, when finished

processing the file you must close it using fclose().

Listing 9.19 illustrates a script using fopen(), fgets(),

and fclose() to read a file and echo it out (replacing

new lines with
 tags).

$f = fopen("sample.txt", "r");

$ln = 0;

while ($line = fgets($f)) {

$ln++;

printf("%2d: ", $ln);

echo $line . "
";

}

fclose($f);

To write data to a file, you can employ the fwrite()

function in much the same way as fgets(), passing

the file handle and the string to write.

In-Memory File Access

While the previous approach to reading/writing files

gives you complete control, the programming

requires more care in dealing with the streams, file

handles, and other low-level issues. The alternative

simpler approach is much easier to use, at the cost of

relinquishing fine-grained control.

Function Description

file() Reads the entire file into an array,

with each array element corresponding to one line in

the file

file_get_contents Reads the entire file into a string

variable

file_put_contents Writes the contents of a string

variable out to a file

To read an entire file into a variable you can simply

use:

$fileAsString =

file_get_contents(FILENAME);

To write the contents of a string $writeme to a file,

you use

file_put_contents(FILENAME, $writeme);

let us imagine we have a comma-delimited text file

that contains information about paintings, where

each line in the file corresponds to a different

painting:

01070,Picasso,The Actor,1904

01080,Picasso,Family of Saltimbanques,1905

02070,Matisse,The Red Madras Headdress,1907

05010,David,The Oath of the Horatii,1784

// read the file into memory; if there is an error then

stop processing

$paintings = file($filename) or die('ERROR: Cannot

find file');

// our data is comma-delimited

$delimiter = ',';

// loop through each line of the file

foreach ($paintings as $painting) {

// returns an array of strings where each element in

the array

// corresponds to each substring between the

delimiters

$paintingFields = explode($delimiter, $painting);

$id= $paintingFields[0];

$artist = $paintingFields[1];

$title = $paintingFields[2];

$year = $paintingFields[3];

// do something with this data

. . .

}

2(a) Explain selectors in JQuery with examples.

Basic Selectors

The four basic selectors were defined back in Chapter 3, and

include the universal

selector, class selectors, id selectors, and elements selectors. To

review:

■ $("*") Universal selector matches all elements (and is slow).

■ $("tag") Element selector matches all elements with the given

element name.

■ $(".class") Class selector matches all elements with the given

CSS class.

■ $("#id") Id selector matches all elements with a given HTML

id attribute.

For example, to select the single <div> element with id="grab"

you would

write:

var singleElement = $("#grab");

To get a set of all the <a> elements the selector would be:

var allAs = $("a");

[10] CO5 L2

These selectors are powerful enough that they can replace the use

of

getElementById() entirely.

The implementation of selectors in jQuery purposefully mirrors

the CSS specification,

which is especially helpful since CSS is something you have

learned and

used throughout this book.

In addition to these basic selectors, you can use the other CSS

selectors that

were covered in Chapter 3: attribute selectors, pseudo-element

selectors, and contextual

selectors as illustrated in Figure 15.4. The remainder of this

section reviews

some of these selectors and how they are used with jQuery.

Attribute Selector

An attribute selector provides a way to select elements by either

the presence of an

element attribute or by the value of an attribute. Chapter 3

mentioned that not all

<body>

<nav>

Canada

Germany

United States

</nav>

<div id="main">

Comments as of <time>November 15, 2012</time>

<div>

<p>By Ricardo on <time>September 15, 2012</time></p>

<p>Easy on the HDR buddy.</p>

</div>

<hr/>

<div>

<p>By Susan on <time>October 1, 2012</time></p>

<p>I love Central Park.</p>

</div>

<hr/>

</div>

<footer>

Home |

Browse |

</footer>

</body>

$("ul a:link")

$("#main>time")

$("#main time")

$("#main div p:first_child")

Figure 15.4 Illustration of some jQuery selectors and the HTML

being selected

browsers implemented it. jQuery overcomes those browser

limitations, providing

the ability to select elements by attribute. A list of sample CSS

attribute selectors

was given in Chapter 3 (Table 3.4), but to jog your memory with

an example, consider

a selector to grab all elements with an src attribute

beginning with

/artist/ as:

var artistImages = $("img[src^='/artist/']");

Recall that you can select by attribute with square brackets

([attribute]), specify

a value with an equals sign ([attribute=value]) and search for a

particular value in

the beginning, end, or anywhere inside a string with ^, $, and *

symbols respectively

([attribute^=value], [attribute$=value], [attribute*=value]).

Pseudo-Element Selector

Pseudo-elements are special elements, which are special cases of

regular ones. As

you may recall from Chapter 3, these pseudo-element selectors

allow you to append

to any selector using the colon and one of :link, :visited, :focus,

:hover,

:active, :checked, :first-child, :first-line, and :first-letter.

These selectors can be used in combination with the selectors

presented above,

or alone. Selecting all links that have been visited, for example,

would be specified

with:

var visitedLinks = $("a:visited");

Since this chapter reviews and builds on CSS selectors, you are

hopefully remembering

some of the selectors you have used earlier and are making

associations between

those selectors and the ones in jQuery. As you already know from

Chapter 6, once you

have the ability to select an element, you can do many things to

manipulate that element

from changing its content or style all the way to removing it.

Contextual Selector

Another powerful CSS selector included in jQuery’s selection

mechanism is the

contextual selectors introduced in Chapter 3. These selectors

allowed you to specify

elements with certain relationships to one another in your CSS.

These relationships

included descendant (space), child (>), adjacent sibling (+), and

general sibling (~).

To select all <p> elements inside of <div> elements you would

write

var para = $("div p");

3(a) Write short notes on the following PHP super global arrays. a)

$_GET b) $_POST c) $_SERVER

PHP uses special predefined associative arrays called
superglobal variables that allow the programmer to easily
access HTTP headers, query string parameters, and other
commonly needed information. They are called superglobal
because these arrays are always in scope and always exist,
ready for the programmer to access or modify them without
having to use the global keyword. Name Description
$GLOBALS Array for storing data that needs superglobal
scope $_COOKIES Array of cookie data passed to page via
HTTP request $_ENV Array of server environment data
$_FILES Array of file items uploaded to the server $_GET
Array of query string data passed to the server via the URL
$_POST Array of query string data passed to the server via
the HTTP header $_REQUEST Array containing the
contents of $_GET, $_POST, and $_COOKIES $_SESSION
Array that contains session data $_SERVER Array
containing information about the request and the server 4.2.1
$_GET and $_POST Super global Arrays The $_GET and
$_POST arrays are the most important super global
variables in PHP since they allow the programmer to access
data sent by the client in a query string.An HTML form (or
an HTML link) allows a client to send data to the server.
That data is formatted such that each value is associated with
a name defined in the form. If the form was submitted using
an HTTP GET request, then the resulting URL will contain
the data in the query string. PHP will populate the
superglobal $_GET array using the contents of this query

string in the URL. If the form was sent using HTTP POST,
then the values would not be visible in the URL, but will be
sent through HTTP POST request body. From the PHP
programmer’s perspective, almost nothing changes from a
GET data post except that those values and keys are now
stored in the $_POST array. Determining If Any Data Sent
PHP that you will use the same file to handle both the
display of a form as well as the form input. For example, a
single file is often used to display a login form to the user,
and that same file also handles the processing of the
submitted form data, as shown in Figure 9.8. In such cases
you may want to know whether any form data was
submitted at all using either POST or GET. In PHP, there are
several techniques to accomplish this task. First, you can

[10] CO4 L2

determine if you are responding to a POST or GET by
checking the $_SERVER['REQUEST_METHOD'] variable.
To check if any of the fields are set. To do this you can use
the isset() function in PHP to see if there is anything set for a
particular query string parameter.

4(a) How cookies and session work? Give examples.
While cookie information is stored and retrieved by the browser, the

information ina cookie travels within the HTTP header. Figure 13.6

illustrates how cookies work.There are limitations to the amount of

information that can be stored in acookie (around 4K) and to the number

of cookies for a domain (for instance,Internet Explorer 6 limited a

domain to 20 cookies).HTTP cookies can also expire. That is, the

browser will delete cookies that

are beyond their expiry date (which is a configurable property of a

cookie). If acookie does not have an expiry date specified, the browser

will delete it when thebrowser closes (or the next time it accesses the

site). For this reason, some commentatorswill say that there are two types

of cookiessession cookies and persistentcookies. A session cookie has

no expiry stated and thus will be deleted at the end ofthe user browsing

session. Persistent cookies have an expiry date specified; they

willpersist in the browser’s cookie file until the expiry date occurs, after

which they aredeleted.

The most important limitation of cookies is that the browser may be

configuredto refuse them. As a consequence, sites that use cookies

should not depend on theiravailability for critical features. Similarly, the

user can also delete cookies or eventamper with the cookies, which may

lead to some serious problems if not handled.

Several years ago, there was an instructive case of a website selling

stereos and televisionsthat used a cookie-based shopping cart. The site

placed not only the productidentifier but also the product price in the cart.

Unfortunately, the site then used theprice in the cookie in the checkout.

Several curious shoppers edited the price in thecookie stored on their

computers, and then purchased some big-screen televisionsfor only a few

cents!

Using Cookies

Like any other web development technology, PHP provides mechanisms

for writingand reading cookies. Cookies in PHP are created using the

setcookie() functionand are retrieved using the $_COOKIES superglobal

associative array.Below example illustrates the writing of a persistent

cookie in PHP

<?php

// add 1 day to the current time for expiry time

$expiryTime = time()+60*60*24;

[10] CO2 L2

// create a persistent cookie

$name = "Username";

$value = "Ricardo";

setcookie($name, $value, $expiryTime);

?>

The setcookie() function also supports several more parameters, which

furthercustomize the new cookie. You can examine the online official

PHP documentationfor more information. The below example illustrates

the reading of cookie values. Notice that when we reada cookie, we must

also check to ensure that the cookie exists. In PHP, if the cookiehas

expired (or never existed in the first place), then the client’s browser

would not

send anything, and so the $_COOKIE array would be blank.

<?php

if(!isset($_COOKIE['Username'])) {

//no valid cookie found

}

else {

echo "The username retrieved from the cookie is:";

echo $_COOKIE['Username'];

}

?>

Persistent Cookie Best Practices

Many sites provide a “Remember Me” checkbox on login forms, which

relies onthe use of a persistent cookie. This login cookie would contain

the user’s usernamebut not the password. Instead, the login cookie would

contain a random token; thisrandom token would be stored along with

the username in the site’s back-end database.Every time the user logs in,

a new token would be generated and stored in thedatabase and cookie.

Another common, nonessential use of cookies would be to use them

to storeuser preferences. For instance, some sites allow the user to choose

their preferredsite color scheme or their country of origin or site

language. In these cases, savingthe user’s preferences in a cookie will

make for a more contented user, but if theuser’s browser does not accept

cookies, then the site will still work just fine; at worstthe user will simply

have to reselect his or her preferences again.

Another common use of cookies is to track a user’s browsing

behavior on a site.Some sites will store a pointer to the last requested

page in a cookie; this informationcan be used by the site administrator as

an analytic tool to help understand howusers navigate through the site.

5 (a) Explain the following PHP OOPS concept with examples. a)

Data Encapsulation b) Inheritance c) Polymorphism

[10] CO4 L2

• Another way of understanding encapsulation is: it is the hiding

of an object’s implementation details.

• Properly encapsulated class will define its properties, hidden

(that is, private).

• Accessing and modifying such a properties will be done

through by writing methods rather than allowing them to be

accessed directly.

• These methods are commonly called getters and setters (or

accessors and mutators).

• Some development environments can even generate getters

and setters automatically.

• A getter methods to return a variable’s value is often very

straightforward and should not modify the property.

• It is normally called without parameters, and returns the

property from within the class.

• For instance:

 private $firstName;

Can represent getter method to return the value as:

public function getFirstName()

 {

 return $this->firstName;

}

• Setter methods modify properties, and allow extra logic to be

added to prevent properties from being set to strange values.

• For instance:

 private $firstName;

Can represent getter method to return the value as:

public function setFirstName($firstName)

 {

 $this->firstName=$firstName;

}

• Two forms of the updated UML class diagram for our data

encapsulated class.

• The longer one includes all the getter and setter methods.

• It is quite common, however, to exclude the getter and setter

methods from a class.

6 (a) Write a PHP program to create a class STUDENT with the

following specification.

Data members: Name, Roll number, Average marks

Member function: Read(getters) and write (setters)

Use the above specification to read and print the information of 2

students.
Data members : Name, Roll number, Average marks

Member function : Read(getters) and write (setters)

Use the above specification to read and print the information of 2

students.

Class STUDENT{

Public $Name;

Public $Roll-number

Public $Average-marks

}

$student1=new STUDENT()

$student2=new STUDENT()

[05] CO4 L3

6 (b) Write short notes on Cookies with examples
While cookie information is stored and retrieved by the browser, the

information ina cookie travels within the HTTP header. Figure 13.6

illustrates how cookies work.There are limitations to the amount of

information that can be stored in acookie (around 4K) and to the number

of cookies for a domain (for instance,Internet Explorer 6 limited a

domain to 20 cookies).HTTP cookies can also expire. That is, the

browser will delete cookies that

are beyond their expiry date (which is a configurable property of a

cookie). If acookie does not have an expiry date specified, the browser

will delete it when thebrowser closes (or the next time it accesses the

site). For this reason, some commentatorswill say that there are two types

of cookiessession cookies and persistentcookies. A session cookie has

no expiry stated and thus will be deleted at the end ofthe user browsing

session. Persistent cookies have an expiry date specified; they

[05] CO4 L3

willpersist in the browser’s cookie file until the expiry date occurs, after

which they aredeleted.

The most important limitation of cookies is that the browser may be

configuredto refuse them. As a consequence, sites that use cookies

should not depend on theiravailability for critical features. Similarly, the

user can also delete cookies or eventamper with the cookies, which may

lead to some serious problems if not handled.

Several years ago, there was an instructive case of a website selling

stereos and televisionsthat used a cookie-based shopping cart. The site

placed not only the productidentifier but also the product price in the cart.

Unfortunately, the site then used theprice in the cookie in the checkout.

Several curious shoppers edited the price in thecookie stored on their

computers, and then purchased some big-screen televisionsfor only a few

cents!

Using Cookies

Like any other web development technology, PHP provides mechanisms

for writingand reading cookies. Cookies in PHP are created using the

setcookie() functionand are retrieved using the $_COOKIES superglobal

associative array.Below example illustrates the writing of a persistent

cookie in PHP

<?php

// add 1 day to the current time for expiry time

$expiryTime = time()+60*60*24;

// create a persistent cookie

$name = "Username";

$value = "Ricardo";

setcookie($name, $value, $expiryTime);

?>

The setcookie() function also supports several more parameters, which

furthercustomize the new cookie. You can examine the online official

PHP documentationfor more information. The below example illustrates

the reading of cookie values. Notice that when we reada cookie, we must

also check to ensure that the cookie exists. In PHP, if the cookiehas

expired (or never existed in the first place), then the client’s browser

would not

send anything, and so the $_COOKIE array would be blank.

<?php

if(!isset($_COOKIE['Username'])) {

//no valid cookie found

}

else {

echo "The username retrieved from the cookie is:";

echo $_COOKIE['Username'];

}

?>

Persistent Cookie Best Practices

Many sites provide a “Remember Me” checkbox on login forms, which

relies onthe use of a persistent cookie. This login cookie would contain

the user’s usernamebut not the password. Instead, the login cookie would

contain a random token; thisrandom token would be stored along with

the username in the site’s back-end database.Every time the user logs in,

a new token would be generated and stored in thedatabase and cookie.

Another common, nonessential use of cookies would be to use them

to storeuser preferences. For instance, some sites allow the user to choose

their preferredsite color scheme or their country of origin or site

language. In these cases, savingthe user’s preferences in a cookie will

make for a more contented user, but if theuser’s browser does not accept

cookies, then the site will still work just fine; at worstthe user will simply

have to reselect his or her preferences again.

Another common use of cookies is to track a user’s browsing

behavior on a site.Some sites will store a pointer to the last requested

page in a cookie; this informationcan be used by the site administrator as

an analytic tool to help understand howusers navigate through the site.

