
IAT5 Solution

Sub: Automata Theory and Computability (18CS54)

Department of Computer Sc. and Engg.

Q.1. Design a Turing Machine for L= {W is a Palindrome over Σ ={0,1}}. Write the transition function for the same and also indicate the moves made by TM for input string W=10101

Ans:

ID for **W=10101**

Q.2. What is NULL production, useless symbol and Unit production? Explain with an example. Eliminate NULL production, useless symbol and Unit production from the following grammar.

$$S \rightarrow ABC$$

$$A \rightarrow BC \mid a$$

$$B \rightarrow bAC \mid \epsilon$$

$$C \rightarrow cAB \mid \epsilon$$

Ans:

- Any production rule in the form A → B where A, B ∈ Non-terminal is called unit production.
- In a CFG, a non-terminal symbol 'A' is a nullable variable if there is a production A → ε or there is a derivation that starts at A and finally ends up with
 ε: A → → ε
- Useless productions The productions that can never take part in derivation of any string, are called useless productions. Similarly, a variable that can never take part in derivation of any string is called a useless variable or useless symbol.

Step1: Remove NULL productions

Null set={S,A,B,C}

$$S \rightarrow ABC \mid AB \mid AC \mid BC \mid A \mid B \mid C$$

 $A \rightarrow BC \mid a \mid B \mid C$
 $B \rightarrow bAC \mid bA \mid bC \mid b$
 $C \rightarrow cAB \mid cA \mid cB \mid c$

Step1: Remove useless and unit productions

No useless symbols.

After removing Unit production.

$$S \rightarrow ABC \mid AB \mid AC \mid BC \mid bAC \mid bA \mid bC \mid b \mid cAB \mid cA \mid cB \mid c \mid a$$

 $A \rightarrow BC \mid a \mid bAC \mid bA \mid bC \mid b \mid cAB \mid cA \mid cB \mid c$

$B \rightarrow bAC \mid bA \mid bC \mid b$ C \rightarrow cAB \ cA \ cB \ c

- Q.3. Write Short notes on:
- (a) Decidability and Undecidability
- (b) Order of growth

Decidability and Undecidability

Decidable language -A decision problem P is said to be decidable (i.e., have an algorithm) if the language L of all yes instances to P is decidable. Example- (I) (Acceptance problem for DFA) Given a DFA does it accept a given word?

- (II) (Emptiness problem for DFA) Given a DFA does it accept any word?
- (III) (Equivalence problem for DFA) Given two DFAs, do they accept the same language?

Undecidable language — A decision problem P is said to be undecidable if the language L of all yes instances to P is not decidable or a language is undecidable if it is not decidable. An undecidable language maybe a partially decidable language or something else but not decidable. If a language is not even partially decidable, then there exists no Turing machine for that language. **Partially decidable or Semi-Decidable Language** — A decision problem P is said to be semi-decidable (i.e., have a semi-algorithm) if the language L of all yes instances to P is RE. A language 'L' is partially decidable if 'L' is a RE but not REC language.

Order of growth:

$$g(n) = (3)^2$$

$$g(n) = 9$$

i.e.

$$f(n) < g(n)$$
 is true.

Hence we can conclude that for n > 2, we obtain

Thus always upper bound of existing time is obtained by big oh notation.

Order of Growth

Measuring the performance of an algorithm in relation with the input size n is called order of growth. For example, the order of growth for varying input size of n is as given below.

Service desirements of the service of	NAME AND ADDRESS OF THE PARTY O	10			
n	log n	n log n	n²	2 ⁿ	
1	0	0	1	2	
2	1	2	4	4	
4	2 .	8	16	16	
8	3	24	64	256	
16	4	64	256	65,536	
32	5	160	1024	4,294,967,296	

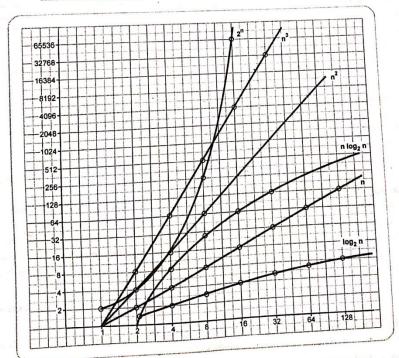


Fig. 7.6.2 Rate of growth of common computing time function

Q.4. Define Chomsky Normal Form (CNF). Convert the following CFG to CNF.

 $S \rightarrow ASB \mid \epsilon$

 $A \rightarrow aAS \mid a$

 $B \rightarrow SbS \mid A \mid bb$

Ans: CNF stands for Chomsky normal form. A CFG(context free grammar) is in CNF(Chomsky normal form) if all production rules satisfy one of the following conditions:

- \circ A non-terminal generating two non-terminals. For example, S \rightarrow AB.
- \circ A non-terminal generating a terminal. For example, S \rightarrow a.

Removing NULL productions:

Null set ={S}

 $S \rightarrow ASB \mid AB$

 $A \rightarrow aAS \mid a \mid aA$

 $B \rightarrow SbS \mid A \mid bb \mid Sb \mid bS \mid b$