

USN

Internal Assessment Test 5 – February 2022
Sub: Unix Programming Sub Code: 18CS56 Branch: ISE

Date: 7/2/2022 Duration: 90 min’s Max Marks: 50 Sem/Sec: V A, B & C OBE
Answer any FIVE FULL Questions MARKS CO RBT

1 Describe the kill() and alarm() API with example.
10 CO4 L2

2 Write a short notes on Message Queue & Semaphores.
 10 CO4 L1

3 Discuss wait and waitpid APIs with their prototype. Mention the differences
between wait and waitpid.

10 CO3 L2

4 Describe with a neat diagram, how a process can be initiated and how it can be
terminated.

10 CO3 L1

5 Describe the Unix Kernel support for the process considering parent and child
process. Show the related data structures.

10 CO3 L2

6 Mention the syntax of getrlimit and setrlimit functions. Apply the same for some
real time example.

10 CO4 L3

 Faculty Signature CCI Signature HOD Signature

Scheme of Evaluation

Internal Assessment Test 5 – Feb 22

Sub: UNIX Programming Code: 18CS56

Date:

7/2/2022

Duration:

90mins

Max
Marks:

50 Sem: V Branch: ISE

Note: Answer Any five full questions.

Question

Description Marks Distribution Max
Marks

10M

1 Describe the kill() and alarm() API with example.

2 * 5M

10M

2

 10M 10M

 Write a short notes on Message Queue &
Semaphores.

 2*5M

 Discuss wait and waitpid APIs with their prototype.
Mention the differences between wait and waitpid.

 2* 4M

3 2M 10M 10M

4 Describe with a neat diagram, how a process can be
initiated and how it can be terminated.

3M
+

7M

 10M 10M

5

 Describe the Unix Kernel support for the process
considering parent and child process. Show the
related data structures.

3M+ 7M

10M

10M

6

 Mention the syntax of getrlimit and setrlimit
functions. Apply the same for some real time
example.

3.5+3.5+3

10M

10M

#include<signal.h>

int kill(pid_t pid, int signal_num);

Scheme Of Evaluation Internal Assessment Test 5 – FEB 2022

Sub: UNIX Programming Code: 18CS56

Date:

7/2/2022

Duration:

90mins

Max
Marks:

50 Sem: V Branch: ISE

Note: Answer Any full five questions

1. Describe the kill() and alarm() API with example. 10M

KILL
A process can send a signal to a related process via the kill API. This is a simple means of inter-
process communication or control. The function prototype of the API is:

Returns: 0 on success, -1 on failure.

The signal_num argument is the integer value of a signal to be sent to one or more processes
designated by pid. The possible values of pid and its use by the kill API are:

pid > 0 The signal is sent to the process whose process ID is pid.

pid == 0 The signal is sent to all processes whose process group ID equals the process group ID of the sender and
for which the sender has permission to send the signal.

pid < 0 The signal is sent to all processes whose process group ID equals the absolute value of pid and for which
the sender has permission to send the signal.

pid == 1 The signal is sent to all processes on the system for which the sender has permission to send the signal.

The following program illustrates the implementation of the UNIX kill command using the kill API:
#include<io

stream.h>

#include<st

dio.h>

#include<un

istd.h>

#include<st

ring.h>

#include<si

gnal.h>

int main(int argc,char** argv)

{

#include<signal.h>

Unsigned int alarm(unsigned int time_interval);

int pid, sig =

SIGTERM;

if(argc==3)

{

if(sscanf(argv[1],”%d”,&sig)!=1)

{
cerr<<”invalid number:” << argv[1] << endl;

return -1;

}

argv++,argc--;

}

while(--argc>0)

if(sscanf(*++argv, “%d”, &pid)==1)

{

 if(kill(pid,sig)==-1)

perror(“kill”);
}

else

 cerr<<”invalid pid:” << argv[0] <<endl;

return 0;

}

The UNIX kill command invocation syntax is:

Kill [-<signal_num>] <pid>......

Where signal_num can be an integer number or the symbolic name of a signal. <pid> is process ID.

ALARM
The alarm API can be called by a process to request the kernel to send the SIGALRM signal after a
certain number of real clock seconds. The function prototype of the API is:

Returns: 0 or number of seconds until

previously set alarm The alarm API can be

used to implement the sleep API:

#include<signal.h>

#include<stdio.h>

#include<unistd.h>

void wakeup()

{ ; }

unsigned int sleep (unsigned int timer)

{

#include <sys/msg.h>
int msgget(key_t key, int flag);

struct sigaction action;

action.sa_handler=wakeup;

action.sa_flags=0;

sigemptyset(&action.sa_mask)

;

if(sigaction(SIGALARM,&actio

n,0)==-1)

{

perror(“sig

action”);

return -1;

}
(void) alarm (timer);

(void)

pause();

return 0;

}

2. Write a short notes on Message Queue & Semaphores.

A message queue is a linked list of messages stored within the kernel and identified by a message
queue identifier. We'll call the message queue just a queue and its identifier a queue ID.

A new queue is created or an existing queue opened by msgget. New messages are added to the
end of a queue by msgsnd. Every message has a positive long integer type field, a non-negative
length, and the actual data bytes (corresponding to the length), all of which are specified to msgsnd
when the message is added to a queue. Messages are fetched from a queue by msgrcv. We don't
have to fetch the messages in a first-in, first-out order. Instead, we can fetch messages based on
their type field.

Each queue has the following msqid_ds structure associated with it:
struct msqid_ds
{

struct ipc_perm msg_perm; /* see Section 15.6.2 */
msgqnum_t msg_qnum; /* # of messages on queue */
msglen_t msg_qbytes; /* max # of bytes on queue */
pid_t msg_lspid; /* pid of last msgsnd() */
pid_t msg_lrpid; / pid of last msgrcv() */

time_t msg_stime; /* last-msgsnd()
time */ time_t msg_rtime; /* last-msgrcv()
time */ time_t msg_ctime; /* last-change time
*/
.
.
.

};

This structure defines the current status of the queue.

The first function normally called is msgget to either open an existing queue or create a new queue.

#include <sys/msg.h>
int msgctl(int msqid, int cmd, struct msqid_ds *buf);

Returns: message queue ID if OK, 1 on error

When a new queue is created, the following members of the msqid_ds structure are initialized.

 The ipc_perm structure is initialized. The mode member of this structure is set to the
corresponding permission bits of flag.

 msg_qnum, msg_lspid, msg_lrpid, msg_stime, and msg_rtime are all set to 0.
 msg_ctime is set to the current time.
 msg_qbytes is set to the system limit.

On success, msgget returns the non-negative queue ID. This value is then used with the other three
message queue functions.

The msgctl function performs various operations on a queue.

Returns: 0 if OK, 1 on error.

The cmd argument specifies the command to be performed on the queue specified by msqid.

Data is placed onto a message queue by calling msgsnd.

Returns: 0 if OK, 1 on error.

Each message is composed of a positive long integer type field, a non-negative length (nbytes), and
the actual data bytes (corresponding to the length). Messages are always placed at the end of the
queue.

The ptr argument points to a long integer that contains the positive integer message type, and it is
immediately followed by the message data. (There is no message data if nbytes is 0.) If the largest
message we send is 512 bytes, we can define the following structure:

struct mymesg{
long mtype; /* positive message type */
char mtext[512]; /* message data, of length nbytes */

 };

SEMAPHORES

A semaphore is a counter used to provide access to a shared data object for multiple processes.

To obtain a shared resource, a process needs to do the following:
1. Test the semaphore that controls the resource.
2. If the value of the semaphore is positive, the process can use the resource. In this case, the process

decrements the semaphore value by 1, indicating that it has used one unit of the resource.
3. Otherwise, if the value of the semaphore is 0, the process goes to sleep until the semaphore value is

greater than 0. When the process wakes up, it returns to step 1.

#include <sys/msg.h>
int msgsnd(int msqid, const void *ptr, size_t nbytes, int flag);

When a process is done with a shared resource that is controlled by a semaphore, the semaphore
value is incremented by 1. If any other processes are asleep, waiting for the semaphore, they are
awakened.
A common form of semaphore is called a binary semaphore. It controls a single resource, and its
value is initialized to 1. In general, however, a semaphore can be initialized to any positive value,
with the value indicating how many units of the shared resource are available for sharing.
XSI semaphores are, unfortunately, more complicated than this. Three features contribute to this
unnecessary complication.

1. A semaphore is not simply a single non-negative value. Instead, we have to define a semaphore as a
set of one or more semaphore values. When we create a semaphore, we specify the number of
values in the set.

2. The creation of a semaphore (semget) is independent of its initialization (semctl). This is a fatal
flaw, since we cannot atomically create a new semaphore set and initialize all the values in the set.

3. Since all forms of XSI IPC remain in existence even when no process is using them, we have to
worry about a program that terminates without releasing the semaphores it has been allocated. The
undo feature that we describe later is supposed to handle this.

The kernel maintains a semid_ds structure for each semaphore set:
struct semid_ds {

struct ipc_perm sem_perm; /* see Section
15.6.2 */ unsigned short sem_nsems; /* # of
semaphores in set */ time_t sem_otime; /* last-
semop() time */
time_t sem_ctime; /* last-change time */
.
.
.

};

Each semaphore is represented by an anonymous structure containing at least the following members:

struct {

unsigned short semval; /* semaphore value,
always >= 0 */ pid_t sempid; /* pid for
last operation */
unsigned short semncnt; /* # processes awaiting
semval>curval */ unsigned short semzcnt; /* #
processes awaiting semval==0 */
.
.
.

};

The first function to call is semget to obtain a semaphore ID.

Returns: semaphore ID if OK, 1 on error

When a new set is created, the following members of the semid_ds structure are initialized.

 The ipc_perm structure is initialized. The mode member of this structure is set to the corresponding
permission bits of flag.

 sem_otime is set to 0.
 sem_ctime is set to the current time.
 sem_nsems is set to nsems.

The number of semaphores in the set is nsems. If a new set is being created (typically in the server),
we must specify nsems. If we are referencing an existing set (a client), we can specify nsems as 0.

#include <sys/sem.h>
int semget(key_t key, int nsems, int flag);

The semctl function is the catchall for various semaphore operations.

The fourth argument is optional, depending on the command requested, and if present, is of type
semun, a union of
various command-specific arguments:

union semun
{

int val; /* for SETVAL */
struct semid_ds *buf; /* for IPC_STAT and
IPC_SET */ unsigned short *array; /* for GETALL
and SETALL */

};

3. Discuss wait and waitpid APIs with their prototype. Mention the differences between wait and waitpid.

wait AND waitpid FUNCTIONS
When a process terminates, either normally or abnormally, the kernel notifies the parent by sending the SIGCHLD
signal to the parent. Because the termination of a child is an asynchronous event - it can happen at any time while
the parent is running - this signal is the asynchronous notification from the kernel to the parent. The parent can
choose to ignore this signal, or it can provide a function that is called when the signal occurs: a signal handler.

A process that calls wait or waitpid can:
 Block, if all of its children are still running
 Return immediately with the termination status of a child, if a child has terminated and is waiting for its
termination status to be fetched
 Return immediately with an error, if it doesn't have any child processes.

Both return: process ID if OK, 0 (see later), or 1 on error.

The differences between these two functions are as follows.
The wait function can block the caller until a child process terminates, whereas waitpid has an option that prevents
it from blocking.
The waitpid function doesn't wait for the child that terminates first; it has a number of options that control which
process it waits for.
If a child has already terminated and is a zombie, wait returns immediately with that child's status. Otherwise, it
blocks the caller until a child terminates. If the caller blocks and has multiple children, wait returns when one
terminates.

For both functions, the argument statloc is a pointer to an integer. If this argument is not a null pointer, the
termination status of the terminated process is stored in the location pointed to by the argument.
Print a description of the exit status

Program to Demonstrate various exit statuses
#include "apue.h" #include <sys/wait.h>
Int main(void)

#include <sys/sem.h>
int semctl(int semid, int semnum, int cmd,... /* union semun arg */);

{
pid_t pid;
int status;
if ((pid = fork()) < 0) err_sys("fork error");
else if (pid == 0) /* child */ exit(7);
if (wait(&status) != pid) /* wait for child */ err_sys("wait error");
pr_exit(status); /* and print its status */ else if (WIFSTOPPED(status))
printf("child stopped, signal number = %d\n", WSTOPSIG(status));
}

The waitpid function provides three features that aren't provided by the wait function.
 The waitpid function lets us wait for one particular process, whereas the wait function returns the status of any
terminated child. We'll return to this feature when we discuss the popen function.
 The waitpid function provides a nonblocking version of wait. There are times when we want to fetch a child's
status, but we don't want to block.
 The waitpid function provides support for job control with the WUNTRACED and WCONTINUED options.

4. Describe with a neat diagram, how a process can be initiated and how it can be terminated.

A C program starts execution with a function called main. The prototype for the main
function is:
int main(int argc, char *argv[]);
where argc is the number of command-line arguments, and argv is an array of pointers to
the arguments.

When a C program is executed by the kernel by one of the exec functions, a special start-
up routine is called before the main function is called. The executable program file
specifies this routine as the starting address for the program; this is set up by the link
editor when it is invoked by the C compiler. This start-up routine takes values from the
kernel, the command-line arguments and the environment and sets things up so that the
main function is called.

The following figure summarizes how a C program is started and the various ways it can terminate.

Process Termination:

There are eight ways for a process to terminate. Normal termination occurs in five ways:
 Return from main.
 Calling exit.
 Calling _exit or _Exit.
 Return of the last thread from its start routine.
 Calling pthread_exit from the last thread.

Abnormal termination occurs in three ways:
 Calling abort.
 Receipt of a signal.
 Response of the last thread to a cancellation request.

5. Describe the Unix Kernel support for the process considering parent and child process. Show
the related data structures.

The data structure and execution of processes are dependent on operating system
implementation.
A UNIX process consists minimally of a text segment, a data segment and a stack
segment. A segment is an area of memory that is managed by the system as a unit.
 A text segment consists of the program text in machine executable instruction code
format.

 The data segment contains static and global variables and their corresponding data.
 A stack segment contains runtime variables and the return addresses of all active
functions for a process.

UNIX kernel has a process table that keeps track of all active process present in the
system. Some of these processes belongs to the kernel and are called as “system
process”. Every entry in the process table contains pointers to the text, data and the
stack segments and also to U-area of a process. U-area of a process is an extension of the
process table entry and contains other process specific data such as the file descriptor
table, current root and working directory inode numbers and set of system imposed
process limits.

All processes in UNIX system expect the process that is created by the system boot code, are created by the
fork system call. After the fork system call, once the child process is created, both the parent and child
processes resumes execution. When a process is created by fork, it contains duplicated copies of the text, data
and stack segments of its parent as shown in the Figure below. Also it has a file descriptor table, which
contains reference to the same opened files as the parent, such that they both share the same file pointer to
each opened files.

Fig: Parent & Child relationship after fork

6. Mention the syntax of getrlimit and setrlimit functions. Apply the same for some real time
example.

getrlimit AND setrlimit FUNCTIONS
Every process has a set of resource limits, some of which can be queried and changed by the geTRlimit
and setrlimit functions.

Both return: 0 if OK, nonzero on error
Each call to these two functions specifies a single resource and a pointer to the following structure:

struct rlimit
{
rlim_t rlim_cur; /* soft limit: current limit */
rlim_t rlim_max; /* hard limit: maximum value for rlim_cur */
};

Three rules govern the changing of the resource limits.
 A process can change its soft limit to a value less than or equal to its hard limit.
 A process can lower its hard limit to a value greater than or equal to its soft limit. This lowering of the
hard limit is irreversible for normal users.
 Only a superuser process can raise a hard limit.

Example: Print the current resource limits
#include "apue.h"
#if defined(BSD) || defined(MACOS)
#include <sys/time.h>
#define FMT "%10lld "
#else
#define FMT "%10ld "
#endif
#include <sys/resource.h>
#define doit(name) pr_limits(#name, name)
static void pr_limits(char *, int);
int main(void)
{
#ifdef RLIMIT_AS
doit(RLIMIT_AS);
#endif
doit(RLIMIT_CORE);
doit(RLIMIT_CPU);
doit(RLIMIT_DATA);
doit(RLIMIT_FSIZE);
#ifdef RLIMIT_LOCKS
doit(RLIMIT_LOCKS);
#endif
#ifdef RLIMIT_MEMLOCK
doit(RLIMIT_MEMLOCK);
#endif
doit(RLIMIT_NOFILE);
#ifdef RLIMIT_NPROC
doit(RLIMIT_NPROC);
#endif
#ifdef RLIMIT_RSS

doit(RLIMIT_RSS);
#endif
#ifdef RLIMIT_SBSIZE
doit(RLIMIT_SBSIZE);
#endif
doit(RLIMIT_STACK);
#ifdef RLIMIT_VMEM
doit(RLIMIT_VMEM);
#endif
exit(0);
}
static void pr_limits(char *name, int resource)
{
struct rlimit limit;
if (getrlimit(resource, &limit) < 0)
err_sys("getrlimit error for %s", name);
printf("%-14s ", name);
if (limit.rlim_cur == RLIM_INFINITY)
printf("(infinite) ");
else
printf(FMT, limit.rlim_cur);
if (limit.rlim_max == RLIM_INFINITY)
printf("(infinite)");
else
printf(FMT, limit.rlim_max);
putchar((int)'\n');
}

**

