
USN

Internal Assessment Test 5 – FEB 2022
Sub: Unix Programming Sub Code: 18CS56 Branch: CSE

Date: 07/02/2022 Duration: 90 mins Max Marks: 50 Sem / Sec: V/A,B&C OBE
Answer any FIVE FULL Questions MARKS CO RBT

1 Explain coprocess with an example program.

Filters are programs that take plain text (either stored in a file or produced by
another program) as standard input, transforms it into a meaningful format, and
then returns it as standard output.

For example a filter copies standard input to standard output, converting any
uppercase character to lowercase.

Filters are normally connected linearly in shell pipelines. The process creates two
pipes: one is the standard input of the coprocess, and the other is the standard
output of the coprocess.

A filter becomes a coprocess when the same program generates the filter's input
and reads the filter's output.

The simple coprocess reads two numbers from its standard input, computes their
sum, and writes the sum to its standard output.

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#define MAXLINE 80
int main(void)
{

int n, int1, int2;
char line[MAXLINE];
while ((n = read(0, line, MAXLINE)) > 0)
{

line[n] = 0;
/* null terminate */
if (sscanf(line, "%d%d", &int1, &int2) == 2)
{
 sprintf(line, "%d\n", int1 + int2);

n = strlen(line);
if (write(1, line, n) != n) printf("write error");

}
else
{

if (write(1, "invalid args\n", 13) != 13)
printf("write error");

[10] CO3 L3

}
}
exit(0);

}

include <stdio.h>
include <stdlib.h>
include <unistd.h>
include <string.h>
#define MAXLINE 80

int
main(void)
{

int n, fd1[2], fd2[2];
pid_t pid;
char line[MAXLINE];
if (pipe(fd1) < 0 || pipe(fd2) < 0)
printf("pipe error");
if ((pid = fork()) < 0) {printf("fork error");}
else if (pid > 0)
{

/* parent */
close(fd1[0]);
close(fd2[1]);
while (fgets(line, MAXLINE, stdin) != NULL) {
n = strlen(line);
if (write(fd1[1], line, n) != n) printf("write error to pipe");
if ((n = read(fd2[0], line, MAXLINE)) < 0) printf("read error from pipe");
if (n == 0) {printf("child closed pipe");break;}
line[n] = 0;

/* null terminate */
if (fputs(line, stdout) == EOF) printf("fputs error"); }
if (ferror(stdin)) printf("fgets error on stdin");
exit(0);
}
else
{

/* child */
close(fd1[1]);
close(fd2[0]);
if (fd1[0] != 0)
{

if (dup2(fd1[0], 0) != 0)
printf("dup2 error to stdin");
//close(fd1[0]);

}
if (fd2[1] != 1) {
if (dup2(fd2[1], 1) != 1)
printf("dup2 error to stdout");
//close(fd2[1]);
}
if (execl("./add2", "add2", (char *)0) < 0)printf("execl error");
}
exit(0);

}

2 Explain popen and pclose APIs.

A common operation is to create a pipe to another process, to either read its

[10] CO3 L1

output or send it input, the standard I/O library has provided the popen and
pclose functions. These two functions handle the following tasks: creating a
pipe, forking a child, closing the unused ends of the pipe, executing a shell to
run the command, and waiting for the command to terminate.

The prototype of the functions are as follows:

FILE *popen(const char *cmdstring, const char *type);
Returns: file pointer if OK, NULL on error

int pclose(FILE *fp);
Returns: termination status of cmdstring, or -1 on error

The function popen does a fork and exec to execute the cmdstring, and returns
a standard I/O file pointer. If type is "r", the file pointer is connected to the
standard output of cmdstring. If type is "w", the file pointer is connected to the
standard input of cmdstring. The pclose function closes the standard I/O stream,
waits for the command to terminate, and returns the termination status of the
shell.

An example program is shown below:

#include <stdio.h>
int main()
{
FILE *fp;
char line[130]; /* line of data from unix command*/
fp = popen("ls -l", "r"); /* Issue the command.
/* Read a line
while (fgets(line, sizeof line, fp))
{
printf("%s", line);
}
pclose(fp);
return 0;
}

3a Differentiate between pipes and FIFOs.

Pipes Fifos

In PIPE, data transfer takes place
between the child process and parent
process. I

FIFO have multiple processes
communicating through it, like multiple
client-server application.

n PIPE, communication is among the
process having a common ancestor
(related process).

In FIFO, it is not necessary for the
process having a common ancestor for
communication (unrelated process).

PIPE is created by pipe () function. FIFO is created by mkfifo () function.

PIPE is unidirectional. FIFO is bi-directional. The same FIFO
can be used for reading and writing.

[05] CO3 L1

3b Write a program to send data from parent process to child process using
pipes.

Normally, a pipe is created by a process, that process calls fork, and pipe is
used between the parent and the child. A pipe is created by calling the pipe()

[05] CO3 L3

function. The prototype is as follows:

int pipe(int filedes[2]);
The function returns 0 on success and -1 on error.
Int main (void)
{
int n;
int fd[2];
pid_t pid;
char line[MAXLINE];
if (pipe(fd) < 0) printf(“Error in creating pipe\n”);
if ((pid = fork()) < 0) printf(“Error in creating process\n”);
else if (pid > 0)
{
close(fd[0]);
write(fd[1],”hello world\n”,12);
}
else
{
close(fd[1]);
n=read(fd[0], line,MAXLINE);
write(1, line, n);
}
exit(0);
}

4 Explain Sigsetjmp and Siglongjmp with example program.

These functions provide Inter function goto capability

Int sigsetjmp (sigjmpbuf env, int save_sigmask);
Int siglongjmp (sigjmpbuf env, int ret_val);

Similar setjmp, except that save_sigmask which helps the calling process to save
signal mask to the env.

Siglongjmp is called from a user defined signal handling functions.

This is because a process signal mask is modified when a signal handler is called.

If user does not want to continue execution from a point where signal interruption
occured.

Siglongjump should be called to ensure the process signal mask is restored
properly when jumping out from a signal handling function.

include <stdio.h>
include <unistd.h>
include <signal.h>
include <setjmp.h>
include <stdlib.h>

sigjmp_buf env;

void call_me(int sig_num)
{

printf("Catch signal: %d\n",sig_num);
siglongjmp(env,2);

[10] CO4 L3

}

int main()
{

sigset_t sigmask;
struct sigaction action, old_action;

sigemptyset(&sigmask);

if(sigaction(SIGINT,&action,&old_action)==-1)
{

printf("Error2\n");
}

if(sigsetjmp(env,1)!=0)
{

printf("return from signal interruption\n");
return 0;

}
else

printf("return from sigsetjmp\n");

pause();
}

5 Discuss client – server communication using FIFOs. Identify the limitations and
suggest solutions.

FIFOs another means of inter-process communication in Unix. They are also
called named pipes. Pipes can be used only between related processes when a
common ancestor has created the pipe. With FIFOs, however, unrelated
processes can exchange data. Another use for FIFOs is to send data between a
client and a server. If we have a server that is contacted by numerous clients,
each client can write its request to a well-known FIFO that the server creates.
The pathname of the FIFO must be known to all the clients that need to contact
the server. Since there are multiple writers for the FIFO, the requests sent by the
clients to the server need to be less than PIPE_BUF bytes in size. This prevents
any interleaving of the client writes.

The problem in using FIFOs for this type of clientserver communication is how to
send replies back from the server to each client. A single FIFO can't be used, as
the clients would never know when to read their response versus responses for

[10] CO3 L2

other clients. One solution is for each client to send its process ID with the
request. The server then creates a unique FIFO for each client, using a pathname
based on the client's process ID. The arrangement has the l

6
Explain in detail the basic coding rules for daemon process.

1.The first thing to do is call umask to set the file mode creation mask to 0. The file
mode creation mask that's inherited could be set to deny certain permissions. If
the daemon process is going to create files, it may want to set specific
permissions. For example, if it specifically creates files with group-read and group-
write enabled, a file mode creation mask that turns off either of these permissions
would undo its efforts.

2. Call fork and have the parent exit . This does several things. The child inherits
the process group ID of the parent but gets a new process ID, so we're
guaranteed that the child is not a process group leader. This is a prerequisite for
the call to setsid that is done next.

3. Call setsid() to create a new session. The three steps occur. The process (a)
becomes a session leader of a new session, (b) becomes the process group
leader of a new process group, and (c) has no controlling terminal.

4. Change the current working directory to the root directory. The current working
directory inherited from the parent could be on a mounted file system. Since
daemons normally exist until the system is rebooted, if the daemon stays on a
mounted file system, that file system cannot be unmounted.

5. Alternatively, some daemons might change the current working directory to
some specific location, where they will do all their work. For example, line printer
spooling daemons often change to their spool directory.

6. Unneeded file descriptors should be closed. This prevents the daemon from
holding open any descriptors that it may have inherited from its parent . We can
use our open_max function or the getrlimit function to determine the highest
descriptor and close all descriptors up to that value.

7. Some daemons open file descriptors 0, 1, and 2 to /dev/null so that any library
routines that try to read from standard input or write to standard output or standard
error will have no effect. Since the daemon is not associated with a terminal
device, there is nowhere for output to be displayed; nor is there anywhere to
receive input from an interactive user. Even if the daemonwas started from an
interactive session, the daemon runs in the background, and the login
session can terminate without affecting the daemon. If other users log in on the
same terminal device, we wouldn't want output from the daemon showing up on
the terminal, and the users wouldn't expect their input to be read by the daemon

[10] CO4 L2

