

1.a.# Python Program to find Diameter, Circumference, and Area Of a Circle

PI = 3.14

radius = float(input(' Please Enter the radius of a circle: '))

diameter = 2 * radius

circumference = 2 * PI * radius

area = PI * radius * radius

print(" \nDiameter Of a Circle = %.2f" %diameter)

print(" Circumference Of a Circle = %.2f" %circumference)

print(" Area Of a Circle = %.2f" %area)

1.b.Python range() function returns the sequence of the given number between

the given range.

range() is a built-in function of Python. It is used when a user needs to perform

an action a specific number of times

Python Program to

show range() basics

printing a number

for i in range(10):

 print(i, end=" ")

print()

using range for iteration

l = [10, 20, 30, 40]

for i in range(len(l)):

 print(l[i], end=" ")

print()

performing sum of natural

number

sum = 0

for i in range(1, 11):

 sum = sum + i

print("Sum of first 10 natural number :", sum)

There are three ways you can call range() :

 range(stop) takes one argument.

 range(start, stop) takes two arguments.

 range(start, stop, step) takes three arguments.

c.

Ans:

Parameters and variables that are assigned in a called function are said to exist in

that function‘s local scope. Variables that are assigned outside all functions are

said to exist in the global scope.

 Variables that are assigned outside all functions are said to exist in the

global scope & they can be modified/corrupted by any of the function.

 A variable must be one or the other; it cannot be both local and global.

 A local scope is created whenever a function is called. Any variables

assigned in this function exist within the local scope

 If we ever want to modify the value stored in a global variable from in a

function, we must use a global statement on that variable.

Example

def func1():

global name

name="Radha"

print("Here name in func1 is "+name);

name='kris'

print("Here name outside of functions is "+name);

func1()

print("Here name outside of functions is "+name);

2.a.break Statements

There is a shortcut to getting the program execution to break out of a while

clause early. If the execution reaches a break statement, it immediately

exits the while clause. In code, a break statement simply contains the break

keyword.

Pretty simple, right? a program that does the same thing as the

previous program, but it uses a break statement to escape the loop. Enter the

following code, and save the file as yourName2.py:

while True:

print('Please type

your name.') name

= input()

if name ==

'your name':

break

print('Thank you!')

continue Statements

Like break statements, continue statements are used inside loops. When the

program execution reaches a continue statement, the program execution

immediately jumps back to the start of the loop and reevaluates the

 condition.

2.b

Operator Operation Example Evaluates to . . .

** Exponent 2 ** 3 8

% Modulus/remainder 22 % 8 6

// Integer 22 // 8 2

 division/floored

quotient

/ Division 22 / 8 2.75

* Multiplication 3 * 5 15

- Subtraction 5 - 2 3

+ Addition 2 + 2 4

2.c# Python program to check if

given number is prime or not

num = 11

If given number is greater than 1

if num > 1:

 # Iterate from 2 to n / 2

 for i in range(2, int(num/2)+1):

 # If num is divisible by any number between

 # 2 and n / 2, it is not prime

 if (num % i) == 0:

 print(num, "is not a prime number")

 break

 else:

 print(num, "is a prime number")

else:

 print(num, "is not a prime number")

Output

11 is a prime number

3a. Removing Values from Lists with del Statements

The del statement will delete values at an index in a list. All of the values in

the list after the deleted value will be moved up one index. For example,

enter the following into the /

interactive shell:

>>> spam = ['cat', 'bat', 'rat', 'elephant']

>>> del spam[2]

>>> spam

['cat', 'bat', 'elephant']

>>> del spam[2]

>>> spam

['cat', 'bat']

The del statement can also be used on a simple variable to delete it, as if it

were an ―unassignment‖ statement. If you try to use the variable after

deleting it, you will get a NameError error because the variable no longer

exists. In practice, you almost never need to delete simple variables. The del

statement is mostly used to delete values from lists.

3b.function to print the longest

word in given sentence

def largestWord(s):

 # Sort the words in increasing

 # order of their lengths

 s = sorted(s, key = len)

 # Print last word

 print(s[-1])

if __name__ == "__main__":

 # Given string

 s = "be confident and be yourself"

 # Split the string into words

 l = list(s.split(" "))

 largestWord(l)

Output:

confident

3c. Dictionaries vs. Lists

Unlike lists, items in dictionaries are unordered. The first item in a list

named spam would be spam[0]. But there is no ―first‖ item in a dictionary.

While the order of items matters for determining whether two lists are the

same, it does not matter in what order the key-value pairs are typed in a

dictionary. Enter the following into the interactive shell:

 spam = ['cats', 'dogs', 'moose']

>>> bacon = ['dogs', 'moose', 'cats']

>>> spam == bacon

False

>>> eggs = {'name': 'Zophie', 'species': 'cat', 'age': '8'}

>>> ham = {'species': 'cat', 'age': '8', 'name': 'Zophie'}

>>> eggs == ham

True

Because dictionaries are not ordered, they can‘t be sliced like lists. /

Trying to access a key that does not exist in a dictionary will result in a

KeyError error message, much like a list‘s ―out-of-range‖ IndexError error

message. Enter the following into the interactive shell, and notice the error

message that shows up because there is no 'color' key:

>>> spam = {'name': 'Zophie', 'age': 7}

>>> spam['color']

Traceback (most recent call last):

File "<pyshell#1>", line 1,

in <module>

spam['color']

/

KeyError: 'color'

3b. The isupper() and islower() methods will return a Boolean True value

if the string has at least one letter and all the letters are uppercase or

lowercase, respectively. Otherwise, the method returns False. Enter the

following into the interactive shell, and notice what each method call returns:

>>> spam = 'Hello, world!'

>>> spam.islower()

False

>>> spam.isupper()

False

>>> 'HELLO'.isupper()

True

>>> 'abc12345'.islower()

True

>>> '12345'.islower()

False

>>> ', '.join(['cats', 'rats', 'bats'])

'cats, rats, bats'

>>> ' '.join(['My', 'name', 'is', 'Simon'])

'My name is Simon'

>>> 'ABC'.join(['My', 'name', 'is', 'Simon'])

'MyABCnameABCisABCSimon'

>>> 'My name is Simon'.split()

['My', 'name', 'is', 'Simon']

By default, the string 'My name is Simon' is split wherever whitespace

characters such as the space, tab, or newline characters are found. These

whitespace characters are not included in the strings in the returned list. You

can pass a delimiter string to the split() method to specify a different string

to split upon. For example, enter the following into the interactive shell:

>>> '12345'.isupper()

False

 4ab. num_list=[]

 n=int(input("Enter the Starting of the range:"))

 k=int(input("Enter the Ending of the range:"))

 for i in range(n,k):

 num_list.append(i)

 print("Original Number List:", num_list)

 even_list=[]

 odd_list=[]

 for i in range(len(num_list)):

 if(num_list[i]%2==0):

 even_list.append(num_list[i])

 else:

 odd_list.append(num_list[i])

 print("Even Numbers List:", even_list)

 print("Odd Numbers List:", odd_list)

Output:

4c. >>> spam = 'Hello, world!'

>>> spam[0]

'H'

>>> spam[4]

'o'

>>> spam[-1]

'!'

>>> spam[0:5]

'Hello'

>>> spam[:5]

'Hello'

>>> spam[7:]

'world!'

5a. While there are several steps to using regular expressions in Python, each

step is fairly simple.

1. Import the regex module with import re.

2. Create a Regex object with the re.compile() function. (Remember to use a

raw string.)

3. Pass the string you want to search into the Regex object‘s

search() method. This returns a Match object.

4. Call the Match object‘s group() method to return a string of the actual

matched text.

>>> phoneNumRegex = re.compile(r'\d\d\d-\d\d\d-\d\d\d\d')

>>> mo = phoneNumRegex.search('My number is 415-555-4242.')

>>> print('Phone number found: ' + mo.group())

Phone number found: 415-555-4242

5b. Grouping with Parentheses

Say you want to separate the area code from the rest of the phone number.

Adding parentheses will create groups in the regex: (\d\d\d)-(\d\d\d-

\d\d\d\d). Then you can use the group() match object method to grab the

matching text from just one group.

The first set of parentheses in a regex string will be group 1. The second

set will be group 2. By passing the integer 1 or 2 to the group() match object

method, you can grab different parts of the matched text. Passing 0 or

nothing to the group() method will return the entire matched text. Enter the

following into the interactive shell:

>>> phoneNumRegex = re.compile(r'(\d\d\d)-(\d\d\d-\d\d\d\d)')

>>> mo = phoneNumRegex.search('My number is 415-555-4242.')

>>> mo.group(1)

'415'

>>> mo.group(2)

'555-4242'

>>> mo.group(0)

'415-555-4242'

>>> mo.group()

'415-555-4242'

If you would like to retrieve all the groups at once, use the groups()

method—note the plural form for the name.

/

>>> mo.groups()

('415', '555-4242')

>>> areaCode, mainNumber = mo.groups()

>>> print(areaCode)

415

>>> print(mainNumber)

555-4242

Since mo.groups() returns a tuple of multiple values, you can use the

multiple- assignment trick to assign each value to a separate variable, as in the

previous areaCode, mainNumber = mo.groups() line.

Parentheses have a special meaning in regular expressions, but what do you

do if you need to match a parenthesis in your text? For instance, maybe the

phone numbers you are trying to match have the area code set in parentheses.

In this case, you need to escape the (and) characters with a backslash. Enter

the following into the interactive shell:

>>> phoneNumRegex = re.compile(r'(\(\d\d\d\)) (\d\d\d-\d\d\d\d)')

>>> mo = phoneNumRegex.search('My phone number is (415) 555-4242.')

>>> mo.group(1)

'(415)'

>>> mo.group(2)

'555-4242'

The \(and \) escape characters in the raw string passed to re.compile() will

match actual parenthesis characters. In regular expressions, the following

/

characters have special meanings:

. ^ $ * + ? { } [] \ | ()

If you want to detect these characters as part of your text pattern, you

need to escape them with a backslash:

\. \ ̂\$ * \+ \? \{ \} \[\] \\ \| \(\)

Make sure to double-check that you haven‘t mistaken escaped parentheses

\(and \) for parentheses (and) in a regular expression. If you receive an

error message about ―missing)‖ or ―unbalanced parenthesis,‖ you may have

forgotten to include the closing unescaped parenthesis for a group, like in this

example:

>>> re.compile(r'(\(Parentheses\)')

Traceback (most recent call last):

--snip--

re.error: missing), unterminated subpattern at position 0

The error message tells you that there is an opening parenthesis at index 0

of the r'(\ (Parentheses\)' string that is missing its corresponding closing

parenthesis.

Matching Multiple Groups with the Pipe

The | character is called a pipe. You can use it anywhere you want to match one

of many expressions. For example, the regular expression r'Batman|Tina Fey'

will match either 'Batman' or 'Tina Fey'.

hen both Batman and Tina Fey occur in the searched string, the first

occurrence of matching text will be returned as the Match object. Enter the

following into the interactive shell:

>>> heroRegex = re.compile (r'Batman|Tina Fey')

>>> mo1 = heroRegex.search('Batman and Tina Fey')

>>> mo1.group()

'Batman'

>>> mo2 = heroRegex.search('Tina Fey and Batman')

>>> mo2.group()

'Tina Fey'

5c. Copying Files and Folders

The shutil module provides functions for copying files, as well as entire folders.

Calling shutil.copy(source, destination) will copy the file at the path source

to the folder at the path destination. (Both source and destination can be

strings or Path objects.) If destination is a filename, it will be used as the

new name of the copied file. This function returns a string or Path object of

the copied file.

Enter the following into the interactive shell to see how shutil.copy() works:

>>> import shutil, os

>>> from pathlib import Path

/

>>> p = Path.home()

➊ >>> shutil.copy(p / 'spam.txt', p / 'some_folder')

'C:\\Users\\Al\\some_folder\\spam.txt'

Moving and Renaming Files and Folders

Calling shutil.move(source, destination) will move the file or folder at the

path source to the path destination and will return a string of the absolute

path of the new location.

If destination points to a folder, the source file gets moved into

destination and keeps its current filename. For example, enter the following

into the interactive shell:

>>> import shutil

>>> shutil.move('C:\\bacon.txt', 'C:\\eggs')

'C:\\eggs\\bacon.txt'

Permanently Deleting Files and Folders

You can delete a single file or a single empty folder with functions in the os

module, whereas to delete a folder and all of its contents, you use the shutil

module.

Calling os.unlink(path) will delete the file at path.

Calling os.rmdir(path) will delete the folder at path. This folder must be

empty of any files or folders.

Calling shutil.rmtree(path) will remove the folder at path, and all files and

folders it contains will also be deleted.

6a,b,c

COMPRESSING FILES WITH THE ZIPFILE MODULE

/

You may be familiar with ZIP files (with the .zip file extension), which can hold

the compressed contents of many other files. Compressing a file reduces its

size, which is useful when transferring it over the internet. And since a ZIP

file can also contain multiple files and subfolders, it‘s a handy way to package

several files into one. This single file, called an archive file, can then be, say,

attached to an email.

Your Python programs can create and open (or extract) ZIP files using

functions in the zipfile module. Say you have a ZIP file named example.zip

Reading ZIP Files

To read the contents of a ZIP file, first you must create a ZipFile object

(note the capital letters Z and F). ZipFile objects are conceptually similar to

the File objects you saw returned by the open() function in the previous

chapter: they are values through which the program interacts with the file. To

create a ZipFile object, call the zipfile.ZipFile() function, passing it a string of

the .ZIP file‘s filename. Note that zipfile is the name of the Python module,

and ZipFile() is the name of the function.

For example, enter the following into the interactive shell:

>>> import zipfile, os

>>> from pathlib import Path

>>> p = Path.home()

>>> exampleZip = zipfile.ZipFile(p / 'example.zip')

>>> exampleZip.namelist()

['spam.txt', 'cats/', 'cats/catnames.txt', 'cats/zophie.jpg']

>>> spamInfo = exampleZip.getinfo('spam.txt')

>>> spamInfo.file_size

13908

/

>>> spamInfo.compress_size

3828

➊ >>> f'Compressed file is {round(spamInfo.file_size / spamInfo

.compress_size, 2)}x smaller!'

)

'Compressed file is 3.63x smaller!'

>>> exampleZip.close()

A ZipFile object has a namelist() method that returns a list of strings for

all the files and folders contained in the ZIP file. These strings can be passed

to the getinfo() ZipFile method to return a ZipInfo object about that

particular file. ZipInfo objects have their own attributes, such as file_size

and compress_size in bytes, which hold integers of the original file size and

compressed file size, respectively. While a ZipFile object represents an entire

archive file, a ZipInfo object holds useful information about a single file in the

archive.

The command at ➊ calculates how efficiently example.zip is compressed by

dividing the original file size by the compressed file size and prints this

information.

Extracting from ZIP Files

The extractall() method for ZipFile objects extracts all the files and folders

from a ZIP file into the current working directory.

>>> import zipfile, os

>>> from pathlib import Path

>>> p = Path.home()

>>> exampleZip = zipfile.ZipFile(p / 'example.zip')

/

➊ >>> exampleZip.extractall()

>>> exampleZip.close()

>>> phoneNumRegex = re.compile(r'\d\d\d-\d\d\d-\d\d\d\d')

>>> mo = phoneNumRegex.search('Cell: 415-555-9999 Work: 212-555-

0000')

>>> mo.group()

'415-555-9999'

>>> phoneNumRegex = re.compile(r'\d\d\d-\d\d\d-\d\d\d\d') # has no

groups

>>> phoneNumRegex.findall('Cell: 415-555-9999 Work: 212-555-0000')

['415-555-9999', '212-555-0000']

7 a,b,c

 A complete program:

 Write a class Point representing a point on coordinate system. Implement

following functions –

 A function read_point() to receive x and y attributes of a Point object as

user input.

 A function distance() which takes two objects of Point class as

arguments and computes the Euclidean distance between them.

 A function print_point() to display one point in the form of ordered-

pair.

Program:

#function to read the attributes of the Point object

def read_point(p):

p.x=float(input

("x

coordinate:"))

p.y=float(input

("y

coordinate:"))

#function to print the attributes of the Point object

def print_point(p):

print("(%g,%g)"%(p.x, p.y))

#function which takes two objects of Point class as arguments and

computes the Euclidean distance between them

def distance(p1,p2):

d=math.sqrt((p1.x-

p2.x)**2+(p1.y-p2.y)**2)

return d

p1=Point() #create first object

print("Enter First point:")

read_point(p1) #read x and y for p1

p2=Point() #create second object

print("Enter Second point:")

read_point(p2) #read x and y for p2

dist=distance(p1,p2) #compute distance

print("First point is:")

print_point(p1) #print p1

print("Second point is:")

print_point(p2) #print p2

print("Distance is: %g" % dist) #print the Euclidean distance

between p1 and p2

Type-based dispatch in Python

class Time:

 """Represents the time of day. attributes: hour, minute, second"""

 def __init__(self, hour=0, minute=0, second=0):

 self.hour = hour

 self.minute = minute

 self.second = second

 def __str__(self):

 return '%.2d:%.2d:%.2d' % (self.hour, self.minute, self.second)

 def increment(time, seconds):

 time.second += seconds

 if time.second >= 60:

 s = time.second / 60

 time.second -= int(s) * 60

 time.minute += int(s)

 if time.minute >= 60:

 m = time.minute / 60

 time.minute -= int(m) * 60

 time.hour += int(m)

 return time

 def add_time(self, other):

 sum = Time()

 sum.hour = self.hour + other.hour

 sum.minute = self.minute + other.minute

 sum.second = self.second + other.second

 if sum.second >= 60:

 sum.second -= 60

 sum.minute += 1

 if sum.minute >= 60:

 sum.minute -= 60

 sum.hour += 1

 return sum

 def __add__(self, other):

 if isinstance(other, Time):

 return self.add_time(other)

 else:

 return self.increment(other)

print('----------------')

start = Time(9, 45)

duration = Time(1, 35)

print(start + duration)

print('----------------')

start = Time(9, 45)

duration = Time(1, 35)

print(start + 1337)

Output

11:20:00

10:07:17

Pure functions

The function that creates a new Time object, initializes its attributes with new

values and returns a reference to the new object. This is called a pure function

because it does not modify any of the objects passed to it as arguments and it has
no effect, like displaying a value or getting user input, other than returning a value.

Polymorphism means multiple forms. In python we can find the same operator

or function taking multiple forms. It also useful in creating different classes

which will have class methods with same name.

class India():

 def capital(self):

 print("New Delhi is the capital of India.")

 def language(self):

 print("Hindi is the most widely spoken language of India.")

 def type(self):

 print("India is a developing country.")

class USA():

 def capital(self):

 print("Washington, D.C. is the capital of USA.")

 def language(self):

 print("English is the primary language of USA.")

 def type(self):

 print("USA is a developed country.")

obj_ind = India()

obj_usa = USA()

for country in (obj_ind, obj_usa):

 country.capital()

 country.language()

 country.type()

8a,b,c

The init method

The init method (short for ―initialization‖) is a special method that gets invoked

when an object or instance is instantiated. Its full name is __init__ (two

underscore characters, followed by init, and then two more underscores). An init

method is like a constructor in java or dot net. An init method for the Time class

might look like this, in this case whenever an object of Time is created with no

parameter the default values are initialized to the hour, minute and second. If you

pass parameters accordingly the values are initialized. in time Hour, minute and

second are initialized to 0. In time 2 Hours is initialized to 10 but a minute and

second are initialized to 0 and so on.

The str method

str is another special method, like init, which returns a string representation of an

object. For example, here str method for Time objects to return string form of

time.

class Time:

 """Represents the time of day. attributes: hour, minute, second"""

 def __init__(self, hour=0, minute=0, second=0):

 self.hour = hour

 self.minute = minute

 self.second = second

 def __str__(self):

 return '%.2d:%.2d:%.2d' % (self.hour, self.minute, self.second)

print('----------------')

time1 = Time()

print(time1)

print('----------------')

time2 = Time(10, 20)

print(time2)

9a,b,c

import requests

res =

requests.get('http://www.gutenberg.org/cache/epub/1112/pg1112.tx

t') res.raise_for_status()

playFile = open('RomeoAndJuliet.txt', 'wb')

for chunk in res.iter_content(100000):

playFile.write(chunk)

Getting Cells from the Sheets

 Once we have a Worksheet object, we can access a Cell object by its name.

 The Cell object has a value attribute that contains value stored in that cell.

 Cell objects also have row, column, and coordinate attributes that

provide location information for the cell.

 Using the sheet‗s cell() method and passing it row=1 and column=2 gets a

Cell object for cell B1, just like specifying sheet['B1'] did.

In [31]:

['Sheet']

In [32]:

import openpyxl

#new workbook object contaning only one sheet with 'Sheet'

wb = openpyxl.W orkbook()

print(wb.get_sheet_names())

sheet = wb.get_active_sheet()

sheet.title = 'V ADP'

print(wb.get_sheet_names())

http://www.gutenberg.org/cache/epub/1112/pg1112.txt%27)
http://www.gutenberg.org/cache/epub/1112/pg1112.txt%27)

['V ADP']

In [33]:

The

sheet

s are:

['She

et']

The

sheets

are:

['V

ADP']

 [36]:

['Sheet']

['First Sheet', 'Sheet',

'Middle Sheet', 'Sheet1']

['First Sheet', 'Sheet']

In []:

import openpyxl

wb = openpyxl.Workbo ok()
prin t("The s heets are:")

print(wb.get_sheet_names())
sheet = wb.get_active_sheet()

sheet.title = 'V ADP'

print("The sheets are:")

print(wb.get_sheet_names())
wb.save('exam ple_copy. xls x')

import openpyxl

wb = openpyxl.W orkbook()

print(wb.get_sheet_names())

wb.create_shee t()

wb.create_shee t(index=0, title='First Sheet')

wb.create_shee t(index=2, title='Middle Sheet')
print(wb.get_sheet_names())

wb.remove_sheet(wb.get_sheet_by_name('Middle Sheet'))

wb.remove_sheet(wb.get_sheet_by_name('Sheet1'))

print(wb.get_sheet_names())
wb.save('exam ple_copy. xls x')

wb.remove_sheet(wb.get_sheet_by_name('Middle Sheet'))
wb.remove_sheet(wb.get_sheet_by_name('Sheet1'))

print(wb.get_sheet_names())

wb.save('exam ple_copy. xls x')

In [37]:

10 a,b,c

In []:

In []:

In []:

In []:

import openpyxl

wb = openpyxl.W orkbook()

sheet = wb.get_sheet_by_name('Sheet')

sheet['A1'] = 'Hello world!'

sheet['B1'] = 435

wb.save('exam ple_copy. xls x')

import PyPDF2

importing required modules

import PyPDF2

creating a pdf file object

pdfFileObj = open('combined minutes.pdf', 'rb')

creating a pdf file reader object, pdfReader

pdfReader = PyPDF2.PdfFileReader(pdfFileObj) printing number of pages in

pdf file

extract author name, file name, file size

print(pdfReader.numPages)

creating an object of page object class

pageObj = pdfReader.getPage(1)

extracting text from page

print(pageObj.extractText())

import os

os.getc wd()

#Program to decrypt PDF file

import PyPDF2

creating a pdf file reader object, pdfReader

pdfFile=open('encrypted.pdf', 'rb')

pdfReader = PyPDF2.PdfFileReader(pdfFile)

In []:

In []:

In []:

 Encrypting Pdf’s:

 A PdfFileWriter object can also add encryption to a PDF document.

 Before calling the write() method to save to a file, call the encrypt()

method and pass it a password string u. PDFs can have a user password

(allowing you to view the PDF) and an owner password (allowing you to

set permissions for printing, commenting, extracting text, and other

features).

 The user password and owner password are the first and second

arguments to encrypt(), respectively.

 If only one string argument is passed to encrypt(), it will be used for both

passwords.

 In this example, we copied the pages of meetingminutes.pdf to a

PdfFileWriter object. We encrypted the PdfFileWriter with the

password swordfish, opened a new PDF called encryptedminutes.pdf, and

wrote the contents of the PdfFileWriter to the new PDF.

 Before anyone can view encryptedminutes.pdf, they‗ll have to enter this

password.

 PROGRAM:

creating an object of page object clas

pageObj=pdfReader.getPage(0)

#usage of decrpyt method, it returns 1 if the pass word is correct,

#else 0 if incorrect

pdfReader.decrypt('rosebud')

creating an object of page object class

pageObj = pdfReader.getPage(0)

extracting text from page

print(pageObj.extractText())

#Program to create new PDF file by copying pages of existing PDF's

import PyPDF2

#opening files in read-binary mode

pdf1File = open('lp.pdf', 'rb') pdf2File

= open('syll.pdf', 'rb')

#creating PdfFileReader objects of two

pdf's pdf1Reader =

PyPDF2.PdfFileReader(pdf1File) pdf2Reader =

PyPDF2.PdfFileReader(pdf2File)

#creating object of class PdfFileWriter

pdfWriter = PyPDF2.PdfFileWriter()

for pageNum in range(pdf1Reader.numPages): # 19 pages-- 0 to 18

pageObj = pdf1Reader.getPage(pageNum) # page index starts from

0 to

pdfWriter.addPage(pageObj) #adds page at the end to the

pdfWriter

for pageNum in range(pdf2Reader.numPages): #21 pages --- 0 to 20

pageObj = pdf2Reader.getPage(pageNum)

pdfWriter.addPage(pageObj) #19+21 = 40 pages

pdfOutputFile = open('adp.pdf', 'wb')

#use write() method

pdfWriter.write(pdfOutputFile)

pdfOutputFile.close()

pdf1File.close()

pdf2File.close()

 Copying pages:

 We can use PyPDF2 to copy pages from one PDF document to another.

 This allows to combine multiple PDF files, cut unwanted pages, or reorder

pages.

 In the below program, Open both PDF files in read binary mode and

store the two resulting File objects in pdf1File and pdf2File.

 Call PyPDF2.PdfFileReader() and pass it pdf1File to get a PdfFileReader

object for meetingminutes.pdf

 Call it again and pass it pdf2File to get a PdfFileReader object for

meetingminutes2.pdf

 Then create a new PdfFileWriter object, which represents a blank PDF

document

 Next, copy all the pages from the two source PDFs and add them to the

PdfFileWriter object. Get the Page object by calling getPage() on

PdfFileReader object. Then pass that Page object to your

PdfFileWriter‗s addPage() method.

These steps are done first for pdf1Reader and then again for pdf2Reader.

JSON stands for JavaScript Object Notation

 JSON is a standard format for data exchange, which is inspired by

JavaScript. Generally, JSON is in string or text format for storing and

transporting data

 JSON is often used when data is sent from a server to a web page

 JSON is "self-describing" and easy to understand

 JavaScript Object Notation is a popular way to format data as a single human-

readable string.

JSON is useful to know, because many websites offer JSON content as a

way for programs to interact with the website. This is known as

providing an application programming interface (API).

 Accessing an API is the same as accessing any other web page via a URL.

 The difference is that the data returned by an API is formatted (with

JSON, for example) for machines; APIs aren‗t easy for people to read.

 Many websites make their data available in JSON format.

Facebook,Twitter, Yahoo, Google, Tumblr, Wikipedia, Flickr, Data.gov,

Reddit, IMDb,Rotten Tomatoes, LinkedIn, and many other popular sites

offer APIs for programs to use.

 JSON Syntax Rules

 Data is in name/value pairs

 Data is separated by commas

 Curly braces hold objects

 Square brackets hold arrays

Reading JSON with the loads() Function

 To translate a string containing JSON data into a Python value, pass it to

the json.loads() function. (The name means ―load string,‖ not ―loads.‖)

 First import the json module, then call loads() and pass to it a string of JSON

data.

 Note that JSON strings always use double quotes. It will return that data as a

Python dictionary.

 Python dictionaries are not ordered, so the key-value pairs may appear in

a different order when printed

 Example:

>>> import json

>>>stringOfJsonData = '{"name": "Zophie", "isCat": true, "miceCaught": 0,

"felineIQ": null}'

>>> jsonDataAsPythonValue = json.loads(stringOfJsonData)

>>> jsonDataAsPythonValue

{'isCat': True, 'miceCaught': 0, 'name': 'Zophie', 'felineIQ': None}

 Writing JSON with the dumps() Function

 The json.dumps() function (which means ―dump string,‖ not ―dumps‖)

will translate a Python value into a string of JSON-formatted data.

 Example:

>>> pythonValue = {'isCat': True, 'miceCaught': 0, 'name': 'Zophie','felineIQ':

None}

>>> import json

>>> stringOfJsonData = json.dumps(pythonValue)

>>> stringOfJsonData

'{"isCat": true, "felineIQ": null, "miceCaught": 0, "name": "Zophie" }'

 Note that the value can only be one of the following basic Python data

types: dictionary, list, integer, float, string, Boolean, or None.

