

USN

Internal Assessment Test 4 – March 2022

Sub: Software Engineering Sub Code: 18CS35 Branch: ISE

Date: 15/3/2022 Duration: 180 min’s Max Marks: 100 Sem/Sec: III / A, B and C OBE

Answer any FIVE FULL Questions MARKS CO RBT

1 a. What is software engineering? What are the different types of software

products?

Solution:

software engineering

An engineering discipline that is concerned with all aspects of software

production from the early stages of system specification to maintaining the

system after

Generic products.

• Stand-alone systems that are marketed and sold to any customer

who wishes to buy them.

• Examples – PC software such as graphics programs, project

management tools; CAD software; software for specific markets

such as appointments systems for dentists.

• The specification of what the software should do is owned by the

software developer and decisions on software change are made by

the developer.

Customized or bespoke products.

• Software that is commissioned by a specific customer to meet their

own needs.

• Examples – embedded control systems, air traffic control software,

traffic monitoring systems.

• The specification of what the software should do is owned by the

customer for the software and they make decisions on software

changes that are required.

6 CO1 L2

b. Explain briefly the software engineering ethics.
Solution:
1. PUBLIC - Software engineers shall act consistently with the public interest.

2. CLIENT AND EMPLOYER - Software engineers shall act in a manner that is in the best

interests of their client and employer consistent with the public interest.

3. PRODUCT - Software engineers shall ensure that their products and related modifications meet

the highest professional standards possible.

4. JUDGMENT - Software engineers shall maintain integrity and independence in their

professional judgment.

5. MANAGEMENT - Software engineering managers and leaders shall subscribe to and promote

an ethical approach to the management of software development and maintenance.

6. PROFESSION - Software engineers shall advance the integrity and reputation of the profession

consistent with the public interest.

7. COLLEAGUES - Software engineers shall be fair to and supportive of their colleagues.

8. SELF - Software engineers shall participate in lifelong learning regarding the practice of their

profession and shall promote an ethical approach to the practice of the profession.

6 CO1 L2

c. List and Explain the Different types of application softwares

Solution:

1. Stand-alone applications These are application systems that run on a local

computer, such as a PC. They include all necessary functionality and do not need

to be connected to a network.

2. Interactive transaction-based applications: Applications that execute on a

remote computer and are accessed by users from their own PCs or terminals.

These include web applications such as e-commerce applications.

8

3. Embedded control systems These are software control systems that control and

manage hardware devices. Numerically, there are probably more embedded

systems than any other type of system.

4. 4. Batch processing systems These are business systems that are designed to

process data in large batches. They process large numbers of individual inputs to

create corresponding outputs.

5. 5. Entertainment systems These are systems that are primarily for personal use

and which are intended to entertain the user.

6. 6. Systems for modeling and simulation These are systems that are developed by

scientists and engineers to model physical processes or situations, which include

many, separate, interacting objects.

2

a. What are the fundamental software process activities? with neat diagram explain

the requirement engineering process.

Solution:

 Software specification, where customers and engineers define the

software that is to be produced and the constraints on its operation.

 Software development, where the software is designed and

programmed.

 Software validation, where the software is checked to ensure that it is

what the customer requires.

 Software evolution, where the software is modified to reflect changing

customer and market requirements.

 Fig: Requirement Engineering Process

8 CO1 L2

2

B. With neat diagram explain Bohem’s spiral model?

 Process is represented as a spiral rather than as a sequence of activities with

backtracking.

 Each loop in the spiral represents a phase in the process.

 Combines change avoidance with change tolerance. It assumes that changes

are a result of project risks and includes explicit risk management activities to

reduce these risks.

 Risks are explicitly assessed and resolved throughout the process.

8 L2

c Explain reuse oriented software engineering.
Solution:

Reuse

 From the 1960s to the 1990s, most new software was developed from scratch,

by writing all code in a high- level programming language.

 The only significant reuse or software was the reuse of functions and

objects in programming language libraries.

 Costs and schedule pressure mean that this approach became increasingly

unviable, especially for commercial and Internet-based systems.

 An approach to development based around the reuse of existing software

emerged and is now generally used for business and scientific software.

Fig. Software Reuse

Reuse levels

 The abstraction level

 At this level, you don’t reuse software directly but use knowledge of

successful abstractions in the design of your software.

 The object level

 At this level, you directly reuse objects from a library rather than

writing the code yourself.

 The component level

4 CO4

 Components are collections of objects and object classes that you

reuse in application systems.

 The system level

At this level, you reuse entire application systems

3 a What is object orientation? Explain the characteristics of object orientation

approach?

Solution:

OO means that we organize software as a collection of discrete objects (that

incorporate both data structure and behavior). There are four aspects

(characteristics) required by an OO approach,

 Identity.

 Classification.

 Inheritance

 Polymorphism.
i) Identity

Identity means that data is organized into discrete, distinguishable

entities called objects.

An object has:

• state - descriptive characteristics

• behaviors - what it can do (or what can be done to it)

• The state of a bank account includes its account number and its

current balance

• The behaviors associated with a bank account include the ability to make deposits and

withdrawals

• Note that the behavior of an object might change its state

Software objects model read-world objects or abstract concepts

• dog, bicycle, Bank account

Real-world objects have states and behaviors

• Dogs' states: name, color, breed, hungry

• Dogs' behaviors: barking fetching

Objects have three responsibilities:
What they know about themselves – (e.g., Attributes)

What they do – (e.g., Operations)

What they know about other objects – (e.g., Relationships)

Classification

It means that objects with same data structure (attribute) and behavior (operations) are

grouped into a class.

• A class is simply a representation of a type of object. It is the blueprint/ plan/ template

that describe the details of an object.

• A class is the blueprint from which the individual objects are created.

10 CO3 L2

 Polymorphism

 It means that the same operation (i.e. action or transformation that the object

performs) may behave differently on different classes.

 Ability of different objects to response same message in different ways.

 Ability of an object to take on multiple forms.

 In a programming language, class objects belonging to the same hierarchical tree may

have functions with the same name, but with different behaviors.

 iv)Inheritance:

• It is the sharing of attributes and operations among classes based on a

hierarchical relationship.

• Subclasses can be formed from broadly defined class.

• Each subclass incorporates or inherits all the properties of its super class

and adds its own unique properties.

b. Explain three different models of object orientation.

Solution

1. Class Model—for the objects in the system & their relationships. It describes

the static structure of the objects in the system and their relationships. Class model

contains class diagrams- a graph whose nodes are classes and arcs are relationships

among the classes.

2. State model—for the life history of objects. It describes the aspects of an object

that change over time. It specifies and implements control with state diagrams-a

graph whose nodes are states and whose arcs are transition between states caused

by events.

3. Interaction Model—for the interaction among objects. It describes how the

objects in the system co-operate to achieve broader results. This model starts with

use cases that are then elaborated with sequence and activity diagrams.

• Use case – focuses on functionality of a system – i.e what a system

does for users.

• Sequence diagrams – shows the object that interact and the time

sequence of their interactions.

• Activity diagrams – elaborates important processing step

10 CO3 L2

4 a. Explain the following with suitable diagrams

(i)Links and Association ii) Generalization

Solution:

Links and associations are the means for establishing

relationships among objects and classes.

• A link is a physical or conceptual connection among objects.

E.g. JoeSmith WorksFor Simplex Company.

• An association is a description of a group of links with common structure

and common semantics.

E.g. a person WorksFor a company.

Association:

• If two classes in a model need to communicate with each other, there must

be link between them, and that can be represented by an association

(connector).

• Associations are inherently bi-directional.

• The association name is usually read in a particular direction but the binary

association may be traversed in either direction

• Association can be represented by a line between these classes with an

arrow indicating the navigation direction. In case arrow is on the both

sides, association has bidirectional association.

10 CO3 L2

Multiplicity

• Multiplicity defines the number of objects associated with an instance of

the association.

• UML diagrams explicitly list multiplicity at the end of association lines.

• Intervals are used to express multiplicity:

(ii)Generalization

(ii)Generalization

• Deriving a class out of a parent class having some inherited property(from

the parent class) and some new property of the derived class.

• The term generalization is for the inheritance in the bottom to the up

direction i.e. from derived class to the parent class.

• Generalization is the relationship between a class (superclass) and one or

more variations of the class (subclasses).

• A superclass holds common attributes, attributes and associations.

• The subclasses adds specific attributes, operations, and associations.

They inherit the features of their superclass.

• Generalization is called a “IS A” relationship

0..*

A generalization connects a subclass to its superclass.

b. With neat diagram explain the class model of a Windowing system

Solution:

10 CO1 L2

5 a. With neat diagram explain the context model of MHC-PMS system

Solution:

 The MHC-PMS (Mental Health Care-Patient Management System) is an

information system that is intended for use in clinics.

 It makes use of a centralized database of patient information but has also

been designed to run on a PC, so that it may be accessed and used from

sites that do not have secure network connectivity.

 When the local systems have secure network access, they use patient

10 CO4 L2

information in the database but they can download and use local copies of

patient records when they are disconnected.

MHC-PMS key features

 Individual care management

o Clinicians can create records for patients, edit the information in the

system, view patient history, etc. The system supports data

summaries so that doctors can quickly learn about the key problems

and treatments that have been prescribed.

 Patient monitoring

o The system monitors the records of patients that are involved in

treatment and issues warnings if possible problems are detected.

 Administrative reporting

 The system generates monthly management reports showing the number of

patients treated at each clinic, the number of patients who have entered and

left the care system, number of patients sectioned, the drugs prescribed and

their costs, etc.

MHC-PMS

 Privacy

It is essential that patient information is confidential and is never disclosed

to anyone apart from authorised medical staff and the patient themselves.

 Safety

Some mental illnesses cause patients to become suicidal or a danger to

other people. Wherever possible, the system should warn medical staff

about potentially suicidal or dangerous patients.

The system must be available when needed otherwise safety may be

compromised and it may be impossible to prescribe the correct medication

to patients.

b. Explain the state diagram of microwave oven

Solution:

 State model describes the sequences of operations

 that occur in

response to external stimuli.

 The state model consists of multiple state diagrams, one for each

class with temporal behavior that is important to an application.

 The state diagram is a standard computer science

 concept that

relates events and states.

 Events represent external stimuli and states represent values objects

 The basic elements of state diagrams are

 Events – An event is an occurrence at a point in time

 states – the state in which the object finds itself at any moment

 transitions – take the object from one state to another

 actions – take place as a result of a transition

10 CO4 L1

 6 a. Explain the rational unified process
Solution:
Its goal is to deliver a high quality product that the customer actually wants.

6 CO5 L3

. Inception Establish the business case for the system. o You should identify all

external entities (people and systems) that will interact with the system and define

these interactions. You then use this information to assess the contribution that the

system makes to the business. If this contribution is minor, then the project may be

cancelled after this phase.

� Elaboration Develop an understanding of the problem domain and the system

architecture. o The goals of the elaboration phase are to develop an understanding

of the problem domain, establish an architectural framework for the system,

develop the project plan, and identify key project risks. On completion of this

phase you should have a requirements model for the system, which may be a set of

UML use-cases, an architectural description, and a development plan for the

software.

� Construction System design, programming and testing. o Testing. Parts of the

system are developed in parallel and integrated during this phase. On completion

of this phase, you should have a working software system and associated

documentation that is ready for delivery to users.

� Transition Deploy the system in its operating environment. o The final phase of

the RUP is concerned with moving the system from the development community

to the user community and making it work in a real environment. This is

something that is ignored in most software process models but is, in fact, an

expensive and sometimes problematic activity. On completion of this phase, you

should have a documented software system that is working correctly in its

operational environment

b. Explain design pattern with UML model of the observer model.
Solution:
The four essential elements of design patterns were defined by the ‘Gang of Four’

in their patterns

 A name that is a meaningful reference to the pattern.

 A description of the problem area that explains when the pattern may be applied.

 A solution description of the parts of the design solution, their relationships, and

 Their responsibilities. This is not a concrete design description. It is a template for

a design solution that can be instantiated in different ways. This is often expressed

graphically and shows the relationships between the objects and object classes in

the solution.

 A statement of the consequences—the results and trade-offs—of applying the

pattern. This can help designers understand whether or not a pattern can be used in

a particular situation.

8 CO5 L2

c. What are the different implementation issues of software engineering?

Solution:

Implementation issues � Focus here is not on programming, although this is

obviously important, but on other implementation issues that are often not covered

in programming texts: Reuse Most modern software is constructed by reusing

existing components or systems. When you are developing software, you should

make as much use as possible of existing code. Configuration management during

the development process, you have to keep track of the many different versions of

each software component in a configuration management system. Host-target

development Production software does not usually execute on the same computer

as the software development environment. Rather, you develop it on one computer

(the host system) and execute it on a separate computer (the target system). Reuse

� From the 1960s to the 1990s, most new software was developed from scratch,

by writing all code in a high-level programming language. The only significant

reuse or software was the reuse of functions and objects in programming language

libraries. � Costs and schedule pressure mean that this approach became

increasingly unviable, especially for commercial and Internetbased systems. � An

approach to development based around the reuse of existing software emerged and

is now generally used for business and scientific software.

6

7 a. What are the two distinct goals of Software testing?

Solution:

The testing process has two distinct goals:

 1. To demonstrate to the developer and the customer that the software meets

its requirements. For custom software, this means that there should be at least

one test for every requirement in the requirements document. For generic

software products, it means that there should be tests for all of the system

 5 CO2 L2

features, plus combinations of these features, that will be incorporated in the

product release.

 2. To discover situations in which the behavior of the software is incorrect,

undesirable, or does not conform to its specification. Defect testing is

concerned with rooting out undesirable system behavior such as system

crashes, unwanted interactions with other systems, incorrect computations, and

data corruption.

b. Explain the three different types of testing carried out during software

development?

Solution:

During development, testing may be carried out at three levels of granularity:

1. Unit testing, where individual program units or object classes are tested. Unit

testing should focus on testing the functionality of objects or methods.

2. Component testing, where several individual units are integrated to create

composite components. Component testing should focus on testing component

interfaces.

 3. System testing, where some or all of the components in a system are

integrated and the system is tested as a whole. System testing should focus on

testing component interactions.

• Development testing is primarily a defect testing process, where the aim of

testing is to discover bugs in the software. It is therefore usually interleaved

with debugging— the process of locating problems with the code and changing

the program to fix these problems.

10 CO4 L2

c. What are the different types of user testing? With neat diagram, explain the six

stages of acceptance testing

Solution:

There are three different types of user testing:

1. Alpha testing, where users of the software work with the development team

to test the software at the developer’s site.

2. Beta testing, where a release of the software is made available to users to

allow them to experiment and to raise problems that they discover with the

system developers.

3. Acceptance testing, where customers test a system to decide whether or not

it is ready to be accepted from the system developers and deployed in the

customer environment.

Define acceptance criteria This stage should, ideally, take place early in the

process before the contract for the system is signed. The acceptance criteria

should be part of the system contract and be agreed between the customer and

the developer.

Plan acceptance testing This involves deciding on the resources, time, and

budget for acceptance testing and establishing a testing schedule. The

acceptance test plan should also discuss the required coverage of the

requirements and the order in which system features are tested.

Derive acceptance tests Once acceptance criteria have been established, tests

have to be designed to check whether or not a system is acceptable. Acceptance

tests should aim to test both the functional and non-functional

Run acceptance tests The agreed acceptance tests are executed on the system.

Ideally, this should take place in the actual environment where the system will

be used, but this may be disruptive and impractical. Therefore, a user testing

environment may have to be set up to run these tests.

Negotiate test results It is very unlikely that all of the defined acceptance tests

will pass and that there will be no problems with the system. If this is the case,

then acceptance testing is complete and the system can be handed over

Reject/accept system This stage involves a meeting between the developers and

the customer to decide on whether or not the system should be accepted

8 a. Write the Lemman’s law of program dynamic evolution.

6 CO5 L2

b. With neat diagram, explain the software reengineering process activities

Solutions:

8 CO5 L2

The activities involved in reengineering process are as follows 1. Source code

translation  Using a translation tool, the program is converted from an old

programming language to a more modern version of the same language or to a

different language. 2. Reverse engineering  The program is analyzed and

information extracted from it.  This helps to document its organization and

functionality.  This process is usually completely automated. 3. Program

structure improvement  The control structure of the program is analyzed and

modified to make it easier to read and understand.  This can be partially

automated but some manual intervention is usually required. 4. Program

modularization  Related parts of the program are grouped together.  Where

appropriate, redundancy is removed.  This is a manual process. 5. Data

reengineering  The data processed by the program is changed to reflect

program changes.  This may mean redefining database schemas, converting

existing databases to the new structure, clean up the data, finding and

correcting mistakes, removing duplicate records, etc.  Tools are available to

support data reengineering.

c. What are the four strategic options for legacy systems

There are four strategic options: 1. Scrap the system completely This option

should be chosen when the system is not making an effective contribution to

business processes. 2. Leave the system unchanged and continue with regular

maintenance This option should be chosen when the system is still required but

is fairly stable and the system users make relatively few change requests. 3.

Reengineer the system to improve its maintainability This option should be

chosen when the system quality has been degraded by change and where a new

change to the system is still being proposed. 4. Replace all or part of the system

with a new system This option should be chosen when factors, such as new

hardware, mean that the old system cannot continue in operation or where off-

the-shelf systems would allow the new system to be developed at a reasonable

cost.

6

9 What are the factors affecting the pricing of software product?

Solutions:

4 CO4 L2

b. With neat diagram, explain the project planning process

Solutions:

The planning process Project planning is an iterative process that starts when

you create an initial project plan during the project startup phase. Plan changes

are inevitable. As more information about the system and the project team

becomes available during the project, you should regularly revise the plan to

reflect requirements, schedule and risk changes. Changing business goals also

leads to changes in project plans. As business goals change, this could affect all

projects, which may then have to be re-planned.

06 CO4 L2

c. With neat diagram, explain the COCOMO-II estimation model.

The COCOMO 2 model An empirical model based on project experience.

Well-documented, ‘independent’ model which is not tied to a specific software

vendor. Long history from initial version published in 1981 (COCOMO-81)

through various instantiations to COCOMO 2. COCOMO 2 takes into account

different approaches to software development, reuse, etc. COCOMO 2 models

COCOMO 2 incorporates a range of sub-models that produce increasingly

detailed software estimates. The sub-models in COCOMO 2 are: Application

10

composition model. Used when software is composed from existing parts.

Early design model. Used when requirements are available but design has not

yet started. Reuse model. Used to compute the effort of integrating reusable

components. Post-architecture model. Used once the system architecture has

been designed and more information about the system is available.

10 a. Explain the product and process standards in software quality management.

Solutions:

Software standards Standards define the required attributes of a product or

process. They play an important role in quality management. Standards may be

international, national, organizational or project standards. Product standards

define characteristics that all software components should exhibit e.g. a

common programming style. Process standards define how the software

process should be enacted. Importance of standards Encapsulation of best

practice- avoids repetition of past mistakes. They are a framework for defining

what quality means in a particular setting i.e. that organization’s view of

quality. They provide continuity - new staff can understand the organisation by

understanding the standards that are used.

06 CO5 L2

b. Explain three phases of software review process.

Solutions:

The software review process Pre-review activities: Pre-review activities are

concerned with review planning and review preparation. Review planning

involves setting up a review team, arranging a time and place for the review,

and distributing the documents to be reviewed. During review preparation, the

team may meet to get an overview of the software to be reviewed. Individual

review team members read and understand the software or documents and

relevant standards.

The review meeting During the review meeting, an author of the document or

program being reviewed should ‘walk through’ the document with the review

team. Post-review activities After a review meeting has finished, the issues and

problems raised during the review must be addressed. This may involve fixing

software bugs, refactoring software so that it conforms to quality standards, or

rewriting documents.

8 CO1 L2

c. Explain the various inspection checks in the program inspection.

8

	WhatsApp Image 2022-06-21 at 2.06.47 PM.pdf (p.1)
	WhatsApp Image 2022-06-21 at 2.06.47 PM (1).pdf (p.2)
	VTU QP SE Solution.pdf (p.3-20)

