

Internal Assesment Test - IV

Sub:	DIGITAL SYSTE	EM DSESIO	SN					Cod	e:	18EE	35
Date:	21/03/2022	Duration:	3 HRS	Max Marks:	100	Sem:	3 rd	Brai	nch:	EEI	(T)
			Answei	Any 10 Ques	stions				_		
									Mark	OI	
4 50		1	0 : 14	G1 1 .1	•					CO	RBT
	ind a minimum SOP so $(a,b,c,d)=\sum m(2,3,4,5,1)$	_	-	Cluskey metho	d				10	CO1	L3
2 St	taircase light is control other at the bottom of (a) Make a truth table (b) Write the logic eq (c) Realize the circuit (d) Realize the circuit	the stair: for this syste uations in the using basic g	m. POS form ates.	1.		and the			10	CO1	L2
3 Si	implify the following $v = f(a,b,c,d) = \pi M$	•			logic:				10	CO1	L3
4 Si	implify using K-Map $Y=f(a,b,c,d,e)=\sum m(1,$	3,4,6,9,11,12	,14,17,192	20,22,25,27,28,	30)+ ∑d	(8,10,24	26)		10	CO1	L3
	ifferentiate synchrono peration shift registers.		hronous co	ounter. Mention	n the fou	r differe	ent mo	des of	f 10	CO3	L3
6 D	esign a Mod 6 ripple c	ounter using	T flip-flop						10	CO3	L3
7 D	esign a synchronous co	ounter with co	ounting sec	quence 3,2,5,1,	0,3usii	ng D-flip	oflops		10	CO3	L3
	/ith a neat logic diag	ram explain	the differ	rent modes of	operatio	n of un	iversa	l shif	t 10	CO3	L3
ex	nalyse the following scitation and output eq ate diagram.	uation, transit					v.Obta	in the	10	CO4	L3

CCI HOD\

on: Step 1: List all minterms in bina, form.

Minterms	Bina	ary repre	esentatio	n
m ₂	0	0	1	0
m ₃	0	0	1	1
m ₄	0	1	0	0
m ₅	0	1	0	1
m ₁₃	1	1	0	1
m ₁₅	1	1	1	1
dm ₈	1	0	0	0
dm ₉	1	0	0	1
dm ₁₀	1	0	1	0
dm ₁₁	1	0	1	1

Step 2: Arrange the minterms according to number of 1's.

Minterms	Binary	у гер	resent	tation
m ₂	0	0	1	0
m _d	0	1	0	0
mg	1	0	0	0
m ₃	0	0	1	1
m ₅	.0	1	0	1
mg	1	0	0	1
m ₁₀	1	0	1	0
m ₁₁	1	0	1	1
m ₁₃	1	1	0	1
m ₁₅	1	1	1	1

Step 3:

Mi	nten	m	Bina	гу гер	resent	tation	
2.	3	1	0	0	1	-	
2,	10	1	-	0	1	0	
4,	5		0	1	0	-	
8,	10	1	1	0	-	0	
8,	9	1	1	0	0	12	
3,	11	1	71	0	1	1	
5,	13		-	1	0	1	
9,	13	1	1	-	0	1	
9,	11	1	1	0	-	1	
10,	11	1	1	0	1	-	
13.	15	1	1	1	2	1	
11.	15	1	1	4	1	-1	

Step 4:

ition	esenta	y repr	Minterm						
-	1	0	-	11	10,	3,	2,		
-	-	0	1	11	10,	9,	8,		
1	-	-	1	15	13,	11,	9,		

Step 5:

	P	rime imp	olicants	Binary representation					
ā	ь	5	4, 5	0	1	0	-		
b	ē	d	5, 13		1	0	1		
Б	c		2, 3, 10, 11	0 mg	0	1	-		
a	Б		8, 9, 10, 11	1	0	-	-		
a	d		9, 11, 13, 15	1	-	-	1		

Step 6:

	Pri	me i	mplicants	m ₂	m ₃	m ₄	m ₅	m ₁₃	m ₅	dm ₈	dm ₉	dm ₁₀	dm ₁₁
ā	b	ē	4.5			0	0						
b	ē	d	5, 13					0.0					
Б	0		2, 3, 10, 13	0	0			0				0	10.63
a	Б		8, 9, 10, 11								•	•	
a	d		9, 11, 13, 15					0	0		0		0

 $Y = \bar{b} c + \bar{a} b \bar{c} + a d$

2.

Fig.(a) Circuit diagram

a. The truth table for the system is illustrated in given truth table

S1	S2	L
0	0	0
0	1	1
1	0	1
1	1	0

- b. The logic equation for given system is specified by L = $S_1^-S_2 + S_1^-S_2^-$
- c. Realization of given case, the circuit using AND-OR gates is demonstrated in fig (b)

Fig.(b) Logic Diagram for the system

4.

Difference between Synchronous and Asynchronous Counter

S.No.	Synchronous Counter	Asynchronous Counter
1.	In the synchronous counter there are continuous clock input signals with flip-flops used to produce the output.	In Asynchronous counters there are different clock signals used to produce the output.
2.	In the synchronous counter, the operation is faster.	In Asynchronous counter the operation is slower.
3.	Synchronous counter is also known as Parallel counter.	Asynchronous counter is also known as Serial counter.
4.	Synchronous counter produces less error than asynchronous counter.	Asynchronous counter produces more errors than a synchronous counter.
5.	Design of the Synchronous counter is complex.	Design of the Asynchronous counter is simple.
6.	Synchronous counters can work with a flexible number of count sequences.	Asynchronous counters can work with a fixed number of count sequences.

There are four basic modes of operation based on the movement of data in the Registers and they are:

- Serial In Serial Out (SISO) Mode.
- Serial In Parallel Out (SIPO) Mode.
- Parallel In Serial Out (PISO) Mode.
- Parallel In Parallel Out (PIPO) Mode.

6.

Solution :

Step 1: Determine the number of flip-flop required. Here, counter goes through 0 - 5 states, i.e., total 6 states. Thus N = 6 and for $2^n \ge N$ we need n = 3, i.e. 3 flip-flops.

Step 2: Type of flip-flops to be used: T

Step 3: Write the truth table for counter

Output of CLK A B C reset logic Y 0 0 0 0 1 0 1 1 0 0 Valid 3 states 0 1 1 1 4 1 0 1 5 1 1 1 1 0 0 Invalid states 0 1

Step 4: Derive reset logic

Step 5: Draw logic diagram

→ 94 consists of 4 flipflops and 4 Multiplezers. The Marie four Multiplezers have two common select inputs s1 and s0. and they select appropriate input for D flip-flop. The below table shows the negister operation depending on the select lines of multiplezer.

Mode	Control	Register			
91	So	Operation			
0	0	No change			
0	1	shift Right			
1	D	Shift Left			
1	1	parallel Load			

- > When \$150 = 00, input 0 is selected and the present value of the negister is applied to the D inputs of the flip-flops. This results no change in Register value.
- → when 5,50 = 01, input 1 is selected and eizewift connections are such that it operates as a right shift Register.
- Twhen S150 = 10, input 2 is selected and elecult connections are such that it operates as a left shift Register.
- Trinally when 5,50 = 11, the binary information on the parallel input lines is transferred into the negister simultaneously and it is a parallel load operation.

9.

Sol.: Step 1: Excitation and output equations.

$$Z = \underline{xQ_1}$$

$$T_1 = \underline{xQ_2} + \overline{x}Q_2 = \underline{x \oplus Q_2}$$

$$T_2 = \underline{xQ_1}$$

Step 2: Transition equations

The transition equation for T flip-flop is,

$$Q^+ = T \oplus Q$$

 $Q_1^+ = x \oplus Q_2 \oplus Q_1$
 $Q_2^+ = xQ_1 \oplus Q_2$

Step 3: Next state map for each flip-flop

	Q2	For		Q;*		
	1	0	0,0,×	1	0	0,0,0
K-M	0	0	00	1	0	00
Region	1	0	01	0	1	01
-	1	1	10	0	1	10
	0	1	11	1	0	11

Step 4: Excitation table

Present state		7335	Next	Next state Ou				
Q ₂	Q ₁	×	-0 x-1		x-0	x - 1		
		Qį	Qi	Qž	Qi			
0	0	0	0	0	1	0	1	
0	1	0	1	1	0	0	0	
1	0	1	1	1	0	0	1	
1	1	1	0	0	1	0	0	

Step 5 : State table

Assuming a = 00, b = 01, c = 10 and d = 11 we have

Present state	Next	state	Output Z		
riesent state	x = 0	x = 1	x = 0	x = 1	
a	a	b	0	1	
ъ	ъ	c	0	0	
· c	d	c	0	1	
d	, c	ь	0	0	

Step 6 : State diagram

11.

Sol.: The flip-flop input equations and output equations are,

$$\begin{split} J_2 = x & J_1 = y_2 & \text{and } z = \overline{x} \, y_2 + \overline{y_2} \, y_1 + \overline{y_1} \, x \\ K_2 = \overline{x} & K_1 = \overline{y_2} \end{split}$$

For JK flip-flop,
$$Q^+ = J\overline{Q} + \overline{K}Q$$

$$\begin{split} J_2^+ = Q_2^+ &= J_2 \overline{Q}_2 + \overline{K}_2 Q_2 \\ &= \times \overline{Q}_2 + \times Q_2 = \times \overline{y}_2 + \times y_2 \end{split}$$

$$= xQ_2 + xQ_2 = xy_2 + xy_2$$

$$J_1^+ = Q_1^+ = J_1 Q_1 + \overline{K}_1 Q_1$$

$$= y_2 \overline{Q}_1 + \overline{y_2} Q_1$$

$$= y_2 \overline{y}_1 + y_2 y_1$$

$$= y_2 (\overline{y}_1 + y_1) = y_2$$

Next-state maps of each flip-flop.

Fig. 5.3.13 (a)

Present state		Next state				Output z	
y ₂ y ₁	x = 0		x=1		x = 0	x=1	
	y ₂ ⁺	УŤ	y ₂ +	y;			
0	0	0	0	1	0	0	1
0	1	0	0	1	0	1	1
1	0	0	1	1	1	1	1
1	1	0	1	1	1	1	0