CMR													211	
INSTITUTE OF		USN												
TECHNOLOGY						_		I.	I I	I			CN	ΛR
Internal Assesment Test –IV														
Sub: SOLAR AND WIND ENERGY			Code								e:	: 18EE731		
Date:	Date: 07/02/22 Duration:		90 mins		Max Marks:		50 Sem		7th	Branch:		EEE		
Answer Any FIVE FULL Questions														
								Marks		OBE				
										CO	RBT			
1 Er	Enumerate the criteria based on which energy sources are classified. Briefly											[(CO1	L2
ex	explain each classification.													
	With schematic representation, explain the mechanism of absorption, scattering, beam and diffuse radiation received on the earth surface.										[10	0]	CO2	L2
	For Coimbatore (11.01830 N, 76.97250 E, and Elevation of 411 m above sea										[10	[[CO3	L3
	level), assuming average sunshine hours per day for the month of March as													
	9.5h, estimate the value of average daily global radiation on horizontal surface.													
4 Lis	List out various types of solar cells. Explain in detail the type of solar cells								ells	[10)]	CO4	L2	
ba	based on junction structure.													
5 De	Derive an expression for the maximum power output (P _{max}) of a horizontal axis									[10)]	CO5	L3	
wi	wind turbine.													

1.

Classification Of Energy Sources

- Based On Utility Of Energy
- · Primary resources
- Intermediate resources
- · Secondary resources
- Based On Traditional Use
 - Conventional energy resources
 - Non conventional energy resources

Based On Long Term Availability

Non renewable resources

Renewable resources

Based On Commercial Application

Commercial energy resources Non commercial resources

Classification Of Energy Sources

- Based On Origin
- · Fossil fuel energy
- · Nuclear energy
- Hydro energy
- Solar energy
- · Wind energy
- · Biomass energy
- · Geothermal energy
- Tidal energy

Utility Of Energy

Primary resources

- Natural / raw energy resources
- Coal, crude oil, sunlight, wind, rivers, uranium etc.
- · Located, extracted, processed and transformed
- · Fairly high EYR

Energy received from raw energy source

• Energy yield ratio =

energy spent to obtain raw energy source

Utility Of Energy

• Intermediate resources

- Obtained from primary energy by one or more steps of transformation
- Electricity, hydrogen

Secondary resources

- Energy supplied to consumer for utilization
- · Usable energy
- Electrical energy, thermal energy (steam, hot water), chemical energy (hydrogen, fossil fuels)

DEPLETION OF SOLAR RADIATION

 Due to present of various gaseous constituents, suspended dust& other minute solid and liquid particulate matter, solar radiation is depleted during its passage through atmosphere

1. Absorption

- Selective absorption of various wavelength occur by different molecules
- Absorbed radiation increases the energy of absorbing molecules, thus raising their temperature
- Nitrogen, molecular oxygen and other atmospheric gases absorb the x-ray and extreme ultraviolet radiation
- · Ozone absorb ultraviolet radiation
- Water vapor and carbon dioxide absorb almost completely infrared radiation
- · Dust particle and air molecule absorb part of solar radiant energy

Scattering

- Scattering by dust particle and air molecules involves redistribution of incident energy
- A part of scattered radiation is lost to space while remaining is directed downwards to the earth surface from different direction as diffuse radiation
- · 1. In cloudy atmosphere
- Major part of incoming solar radiation is reflected back into the atmosphere by clouds
- Another part is absorbed by clods
- Rest is transmitted downwards to the earth surface as diffuse radiation
- · 2. Energy reflected back to the space
- Reflection from clouds
- Scattering by the atmospheric gases and dust particle
- · Reflection from earth surface is called earth albedo

- Surface of earth have 2 components of solar radiation:
- Direct or beam radiation: unchanged direction
- *Diffuse radiation*: radiation which changed its direction by scattering and reflection
- Global radiation= beam radiation+ diffuse radiation

· Beam radiation

 Solar radiation propagating in straight line & received at the earth surface without change of direction ie in line with sun

Diffuse radiation

- Solar radiation scattered by aerosols, dust and molecule is known as diffuse radiation
- It does not have unique direction

Global radiation

- Total radiation
- Even on clear days there will some diffuse radiation depending upon the amount of dust particle, ozone and water vapor present in the atmosphere
- On overcast days(when sun is not visible) all the radiation reaching the ground will be diffuse radiation
- *Intensity of diffuse radiation* from various direction in the sky is *not uniform*: **Anisotropic**
- In many situation the *intensity* from all direction tends to be reasonably *uniform*: **Isotropic**
- Radiation available on earth surface< received outside the earth atmosphere

For the most of March,

Daily extratervistrial radiation $H_0 = A_0 rage$ radiation for the whole most H_0 on March 16i. $n = \frac{7}{31} + \frac{6}{28} + 16 = 75 \text{ days}$ $S = 23.45^\circ$ Sin $\left(\frac{260^\circ}{365^\circ} (284 + n)\right) = -2.4177^\circ$ Also day length on March 16 is $t_d = t_{down} = \frac{9}{15} \cos^5 (-t_{an} \emptyset t_{an} S)$ = 11.937 hSolar Constant $T_{SC} = 1367 \text{ W/m}^2 = 1.367 \text{ KM/m}^2$ = 11.937 h = 11.9

structure.

Based on Types of Junction Structure

P-n homojunction Type

- Semiconductor material on both sides of the junction is same Doping materials are different
- Hence band gap remains same throughout the cell material
- Losses due to recombination at the surface

P-n heterojunction type

- Two dissimilar semiconductor materials such as group III-IV or II-(closely matching crystal lattice) are used
- Band gap of top material is wider than the below material
- Higher band gap region appears transparent to photons with lower energies
- Reduces recombination loss
- Examples: Gallium Arsenide-Gallium Aluminium Arsenide (GaAs-GaAlAs), Cadmium Sulphide-Copper Sulphide (CdS-Cu₂S), Cadmium Sulphide-Copper Indium Diselenide (CdS-CuInSe₂), Cadmium Sulphide-Cadmium Telluride (CdS-CdTe)

MAXIMUM POWER (PMAX)

- * HAWT is considered
- * Betz model of expanding air stream tube is shown
- x Air mass flow rate is the mass of substance which Upstream passes per unit time

$$\dot{m} = \frac{dm}{dt}$$

* The air mass flow rate remains same throughout the steam tube

$$\dot{m} = pA_1V_1 = pA_2V_2 = pAV$$

Where V₁ or V_i velocity at the upstream (incoming) of the

V2 or Ve velocity at the downstream (exit) of the turbine

A area of the wind turbine rotor

x Force exerted on the wind by the rotor is

$$F = ma = m \frac{dv}{dt} = \rho AV(V_1 - V_2)$$
 ----- (1)

 $F=ma=m\frac{dv}{dt}=\rho AV(V_1-V_2)-\cdots (1)$ × Work done to move the rotor to dx distance by the force of the air at uniform speed is

$$dE = F \times dx$$

* The power extracted by the turbine is

$$P = \frac{dE}{dt} = F \frac{dx}{dt} = FV - (2)$$

$$\times$$
 (1) in (2)

0

$$P = pAV^2(V_1 - V_2)$$
 ----- (3)

x Power can be computed using kinetic energy as

$$\mathsf{P} = \frac{\Delta E}{\Delta t} = \frac{1}{2} \dot{m} V_1^2 - \frac{1}{2} \dot{m} V_2^2 = \frac{1}{2} \dot{m} (V_1^2 - V_2^2) = \frac{1}{2} \rho \mathsf{AV} \; (V_1^2 - V_2^2) \; \cdot \cdot \cdot \cdot \; (4)$$

× Equating (3) and (4)

$$pAV^{2}(V_{1} - V_{2}) = \frac{1}{2}pAV(V_{1}^{2} - V_{2}^{2})$$

$$\rho AV^{2}(V_{1} - V_{2}) = \frac{1}{2}\rho AV(V_{1} + V_{2})(V_{1} - V_{2})$$

$$V = \frac{V_1 + V_2}{2} - \cdots (5)$$

x Hence wind velocity of the rotor is taken as the average of upstream and downstream velocities

× (5) in (4)

$$P = \frac{1}{4}\rho A (V_1 + V_2) (V_1^2 - V_2^2) - \cdots (6)$$

Open with - 1/2) ---- (6)

$$P = \frac{1}{2} \rho A \left(V_1^3 - V_1 V_2^2 + V_2 V_1^2 - V_2^3\right)$$

- P = \frac{1}{4} PA \((V_1^3 V_1 V_2^2 + V_2 V_1^2 V_2^3 \)

 * From (6) it is observed that V_2 is +ve in one term and -ve in the other because of which too low or too high value of V_2 will result in reduced power

 * Hence there is an obtained and of the other because of which too low or too high value of V_2 will result in reduced power
- Hence there is an optimum exit velocity V₂ which results in maximum power P_{max} obtained by

$$\frac{dP}{dV_2} = 0$$

$$-V_1 2V_2 + V_1^2 - 3V_2^2 = 0$$

$$3V_2^2 + 2V_1V_2 - V_1^2 = 0 - (7)$$

- × Solution for (7) is $V_2 = V_1$ or $V_2 = \frac{1}{3}V_1$
- x Only second solution is physically acceptable giving the optimum exit velocity of

$$V_{2 \text{ opt}} = \frac{1}{3}V_1 - \cdots (8)$$

× (8) in (6)

0

$$P_{\text{max}} \text{ or } P_{\text{T}} = \frac{1}{4} \rho A \left(V_1 + \frac{1}{3} V_1 \right) \left(V_1^2 - \frac{1}{9} V_1^2 \right)$$
$$= \frac{1}{4} \rho A \left(\frac{4V_1}{3} \right) \left(\frac{8V_1^2}{9} \right)$$

$$P_{\text{max}} = \frac{8}{27} \rho A V_1^3$$

$$= \frac{16}{27} \times \frac{1}{2} \rho A V_1^3$$