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Internal Assessment Test 1 – July 2022 

Sub: Engineering Physics Theory Sub Code: 21PHY22 Branch: ECE/EEE/AIML/AIDS 

Date: 09/07/2022 Duration: 90 min’s Max Marks: 50 Sem/Sec: II Sem / I,J,K,L,M,N & O OBE 

Answer any FIVE FULL Questions 

Given: c = 3  108 m/s; h = 6.625  10 -34Js; k = 1.38  10 -23 J/K; me = 9.1  10-31kg; e = 1.6  10-19C MARKS 

CO RBT 

1 (a) Derive time independent Schrodinger wave equation for a particle moving in one dimension [07] CO1 L3 

   (b) State any three applications of shock waves. 

 

[03] CO3 L1 

2 (a) With the help of a neat diagram, explain the construction and working of Reddy shock tube. [07] CO3 L3 

   (b)  An electron has a speed of 6.5 x 105 m/s accurate to 0.18%. With what accuracy can the position of 

electron be located? 

[03] CO1 L3 

3 (a)  State assumptions of Planck’s law. Show that Planck’s law reduces to Wien’s law and Rayleigh 

Jeans’ law at shorter and longer wavelength limits 

[07] CO1 L3 

   (b) Define the following: Mach number, Supersonic waves and Ultrasonic waves. 

 

[03] CO3 L1 

4 (a) State Heisenberg’s uncertainty principle and show that electrons cannot exist in the nucleus. [07] CO1 L3 

   (b)  Calculate the energy of an electron if the de- Broglie wavelength associated with it is 1.8Å. [03] CO1 L3 
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USN           

 

Internal Assessment Test 1 – July 2022 

Sub: Engineering Physics Theory Sub Code: 21PHY22 Branch: ECE/EEE/AIML/AIDS 

Date: 09/07/2022 Duration: 90 min’s Max Marks: 50 Sem / Sec: II Sem / I,J,K,L,M,N & O OBE 

Answer any FIVE FULL Questions 

Given: c = 3  108 m/s;    h = 6.625  10 -34Js ;      k = 1.38  10 -23 J/K;        me = 9.1  10-31kg;     e = 1.6  10-19C MARKS 

CO RBT 

1 (a)  Derive time independent Schrodinger wave equation for a particle moving in one dimension [07] CO1 L3 

   (b) State any three applications of shock waves. 

 

[03] CO3 L1 

2 (a) With the help of a neat diagram, explain the construction and working of Reddy shock tube. [07] CO3 L3 

   (b)  An electron has a speed of 6.5 x 105 m/s accurate to 0.18%. With what accuracy can the position of 

electron be located? 

[03] CO1 L3 

3 (a)  State assumptions of Planck’s law. Show that Planck’s law reduces to Wien’s law and Rayleigh Jeans’ 

law at shorter and longer wavelength limits 

[07] CO1 L3 

   (b) Define the following: Mach number, Supersonic waves and Ultrasonic waves. 

 

[03] CO3 L1 

4 (a) State Heisenberg’s uncertainty principle and show that electrons cannot exist in the nucleus. [07] CO1 L3 

   (b)  Calculate the energy of an electron if the de- Broglie wavelength associated with it is 1.8Å. [03] CO1 L3 

             PTO 



 

 

 

 

 

5 (a) What are damped oscillations. Discuss the theory of damped oscillations. Represent overdamping, 

critical damping and under damping by graph. 

[7] CO3 L3 

   (b)  A free particle is executing S.H.M in straight line with a period of 20 seconds. At the equilibrium 

point, the velocity is found to be 0.9m/s. Find the displacement at the end of 4 seconds, and also the 

amplitude of oscillation. 

 

[3] CO2 L3 

6 (a) Find the eigen function and energy eigen values for a particle in a one-dimensional potential well of 

infinite height.  

[7] CO3 L3 

   (b) In a shock tube experiment, the shock wave propagates between the two sensors separated by 10cm 

in a duration of 100x10-6 s. Find the Mach number assuming velocity of sound as 340m/s. 

 

[3] CO3 L4 

7 (a) Applying Hooke’s law derive the expression for the effective spring constants of Series and Parallel 

combination of springs. 

[6] CO2 L3 

   (b) A spectral line of wavelength 6500Å has a width of 10-5Å. Evaluate the minimum time spent by the 

electron in the upper energy state between the excitation and de-excitation processes. 

 

[4] CO1 L4 

8 (a) Define SHM and mention any two examples. Derive the differential equation using Hooke’s law.   [6] CO2 L3 

   (b) A particle is trapped in a one-dimensional potential well of width L. If the particle is in its second 

excited state, evaluate the probability to find the particle between x=L/3 and x=2L/3. 

[4] CO3 L4 
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IAT-1  2021-22 EVEN SEM 

SCHEME 

1.a)  Time independent Schrödinger equation 

A matter wave can be represented in complex form as  

)sin(cossin wtiwtkxA  (1 mark) 
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From Debroglie’s relation  
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Total energy of a particle  

E = Kinetic energy + Potential Energy 
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1B (1 mark for each application) 

 Aerodynamics – hypersonic shock tunnels, scramjet 

engines. 

 High temperature chemical kinetics – ignition delay 

 Rejuvenating depleted bore wells 

 Material studies – effect of sudden impact pressure, 

blast protection materials 

 Investigation of traumatic brain injuries – Nerve 

activation 

 Needle-less drug delivery 

 Wood preservation – Sandlewood oil extraction  

2A 

 

Reddy shock tube: (Construction 3 marks) 

A shock tube is a device used to study the changes in pressure & temperature 

which occur due to the propagation of a shock wave. A shock wave may be 

generated by an explosion caused by the  buildup of high pressure which 

causes diaphragm to burst.  

It is a hand driven open ended shock tube. It was conceived with a medical 

syringe.  A plastic sheet placed between the plastic syringe part and the needle 

part constitutes the diaphragm. 

 

 A high pressure (driver) and a low pressure (driven) side separated 

by a diaphragm. 

 When diaphragm ruptures, a shock wave is formed that propagates 

along the driven section. 

 Shock strength is decided by driver to driven pressure ratio, and 

type of gases used.  

 

 

Working: (Working 4 marks) 
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 The piston is initially at rest and accelerated to final velocity V in a 

short time t. 

 The piston compresses the air in the compression tube. At high 

pressure, the diaphragm ruptures and the shock wave is set up. For 

a shock wave to form, V piston> V sound.  

Formation of shock wave: 

As the piston gains speed, compression waves are set up. Such compression 

waves increase in number. As the piston travels a distance, all the compression 

waves coalesce and a single shock wave is formed. This wave ruptures the 

diaphragm. 

 

 

 

Mach number   

Sound

Shock

V

V
M   

2B (Formula-1mark+ Substitution-1mark +Answer-

1mark) 

      ∆𝒗 =
𝟎. 𝟏𝟖

𝟏𝟎𝟎
× 𝟔. 𝟓 × 𝟏𝟎𝟓 = 𝟏𝟕𝟕𝟎𝒎/𝒔 

∆𝒙 =
𝒉

𝟒𝝅𝒎∆𝒗
= 𝟑. 𝟐𝟕 × 𝟏𝟎−𝟖𝒎 

 

 

3A ( 2 marks) 

                   

1.   a black body is imagined to be consisting of large number 

of electrical oscillators. 

2.  an oscillator emits or absorbs energy in discrete units. It can 

emit or absorb energy by making   

     a transition from one quantum state to another in the form of 

discrete energy packets known  

     as photons whose energy is an integral multiple of hν where 

h is the planks constant and ν is  

     the frequency. 

3. the key point in Planck’s theory is the radical assumption of 

quantized energy states. This  

   development marked the birth of quantum theory.   

    Based on these ideas, Planck was able to derive an 

expression that agreed remarkably well  

    with the experimental curves. It is given by   
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Where h is Planck’s constant, c is velocity of light, T is absolute 

temperature, λ is the wavelength and k is Boltzmann constant  

Deduction of Weins law: ( 2 marks) 

It is applicable at smaller wavelengths. 

For smaller wavelengths  1kT
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          So Planck’s radiation law becomes  
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Deduction of Rayleigh Jeans Law: (2 marks) 

It is applicable at longer wavelengths. 

For longer wavelengths   1
kT

h
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3B 

Mach number is the ratio of velocity of fluid causing the shock 

wave to the velocity of sound in the medium. It represents the 

compressibility nature of the medium. (1 mark) 

Supersonic waves: Shock waves whose Mach number is 

greater than 1(1 mark) 

Ultrasonic wave : Sound waves of frequency greater than 

20,000Hz. (1 mark) 

 

 

4A 

 
HEISENBERG’S UNCERTAINTY PRINCIPLE: 

The position and momentum of a particle cannot be determined 

accurately and simultaneously. The product of uncertainty in the 

measurement of position )( x  and momentum is always greater than 

or equal to
2

h
.   (2 marks) 

)( x . )( p



4

h
 

 

 TO SHOW THAT ELECTRON DOES NOT EXIST INSIDE 

THE NUCLEUS: 

We know that the diameter of the nucleus is of the order of 10-14m.If 

the electron is to exist inside the nucleus, then the uncertainty in its 

position Δx cannot exceed the size of the nucleus  

155 10x x m   

Now the uncertainty in momentum is  

15

19

5 10

0.1 10 . /
4

x x m

h
P x kg m s

x x





 

  


(2 marks) 

 

Then the momentum of the electron can atleast be equal to the 

uncertainty in momentum.   

190.1 10 . /P P x kg m s  
 
 

Now the energy of the electron with this momentum supposed to be 

present in the nucleus is given by (for small velocities -non-relativistic-

case) 

2 2 2 4 13548.8 10 343oE p c m c x J MeV     

(2 marks) 

 

 The beta decay experiments have shown that the kinetic energy of the 

beta particles (electrons) is only a fraction of this energy. This indicates 

that electrons do not exist within the nucleus. They are produced at the 

instant of decay of nucleus (  



 epn     /   




enp   ).  (1 mark) 

 

4B (Formula-1mark+ Substitution-1mark +Answer-

1mark) 
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5A:In  damped oscillations, the oscillator looses energy due to 

frictional forces causing the decrease in amplitude. (1 mark) 

 

 Let us assume that in addition to the elastic force F =- kx, there is a 

force that is opposed to the velocity, F = b v where b is damping 

coefficient  
For the oscillating mass in a medium with resistive coefficient b, the 

equation of motion is given by 

0
2

2


dt
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This is a homogeneous, linear differential equation of second order. 

The auxiliary equation is    02 
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The roots are mkb
mm
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D 4
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The solution can be derived as  
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Note: This can be expressed as x(t) =   
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Here, the term  

t
m

b

Ae 2


 represents the decreasing amplitude and    

(ωt-ɸ) represents phase(2 marks) 

 

Case 1:      mkb 42         OVER DAMPING 

Case 2:      mkb 42         UNDER DAMPING 

Case 3:      mkb 42         CRITICAL DAMPING 

                     
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5B(Formula-1mark+ Substitution-1mark +Answer-

1mark) 

 

 

6A 

Particle in an infinite potential well problem: 

Consider a particle of mass m moving along X-axis in the region from X= 0 to 

X = a in a one dimensional potential well as shown in the diagram. The potential 

energy is assumed to be zero inside the region and infinite outside the region. 

 

 

(1 mark) 

 

Applying, Schrodingers equation for region (1) as particle is supposed to be 

present  in region (1)  
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                      Auxiliary equation is   022  xkD  

Roots are  D = +ik and D = -ik 

Region (1) 

 

 

 

 

 

 

 

X=0          X=a 

Region(2

) 

Under damping 
Critical damping 

Over damping 

displacement 

time 
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The general solution is (2 marks) 

 

kxDkxC

kxBAikxBA

kxikxBkxikxA

BeAex ikxikx

sincos
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)sin(cos)sin(cos
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 

 

The boundary conditions are  

1. At x=0, 0 0C  

2. At x=a, 0   

D sin ka = 0   ka = n  ………(2) 

where n = 1, 2 3… 

 x
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2
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 To evaluate the constant D:  

 

Normalisation: For one dimension  
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6B (Formula-1mark+ Substitution-1mark +Answer-

1mark) 
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7A 

Expression for  Spring Constant  for  Series Combination  

(3marks) 

 

 

 

Consider a load suspended through two springs with spring constants 

k1 and k2 in series combination. Both the springs experience same 

stretching force. Let Δx1 and Δx2 be their elongation. 

Total elongation   is given by 
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Expression for Spring Constant  forParallel 

Combination(3marks) 

 

 

 

Consider a load suspended through two springs with spring constants 

k1 and k2 in parallel combination. The two individual springs both 

elongate by x but experience the load non uniformly. 

Total load across the two springs is given by 
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7B (Formula-1mark+ Substitution-1mark +Answer-

2marks) 

 

 

=1.12x10-7 s 

 

8A 

SIMPLE HARMONIC MOTION   

It is the periodic oscillations of an object caused when the restoring force on the 

object is proportional to the displacement. The restoring force is  directed 

opposite to displacement. 

Ex: 1. Oscillation of mass connected to spring 

       2. Oscilations of prongs of Tuning fork 

       3. Simple pendulum   

 

                           Restoring force α – displacement 

                                              F = -k x (3marks) 

 

 Here k is the proportionality constant known as spring constant. It represents 

the amount of restoring force produced per unit elongation and  is a relative 

measure of stiffness of the material. 
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Here ωo is angular velocity = 2.π.f 

f  is the natural frequency     

m

k
f

2

1
  

The Solution is of the form    x(t) = A cosωot + B sinωot. 

              This can also be expressed as x(t) = C cos(ωot-ѳ) where 

22 BAC                    tanѳ = B/A (3marks) 
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8B (Formula-1mark+ Substitution-1mark +Answer-

2marks) 

n=3 
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