USN					

INTERNAL ASSESSMENT TEST – IV

Sub:	b: DIGITAL SIGNAL PROCESSING					Code:	18EC52		
Date:	04/ 02 / 2022	Duration:	90 mins	Max Marks:	50	Sem:	V	Branch:	ECE

Answer any 5 full questions

	This wer any 5 run questions			
		Marks	CO	RBT
1	Derive an expression for DFT and IDFT of a finite length sequence.	[10]	CO1	L2
2	Compute the 6-point DFT of the sequence $x[n] = [1,3,5,7]$. Plot the magnitude spectrum and the phase spectrum.	[10]	CO1	L2
3(a)	Compute the 4-point DFT of $x[n] = [1,2,3,4]$ using matrix method. Plot the magnitude spectrum and the phase spectrum.	[06]	CO1	L2
3(b)	Compute the IDFT of $X[k] = [9, -3 + j1.7321, -3 - j1.7321]$ using matrix method.	[04]	CO1	L2

USN					

INTERNAL ASSESSMENT TEST – IV

Sub:	Sub: DIGITAL SIGNAL PROCESSING						Code:	18EC52	
Date:	04/ 02 / 2022	Duration:	90 mins	Max Marks:	50	Sem:	V	Branch:	ECE

Answer any 5 full questions

		Marks	СО	RBT
1	Derive an expression for DFT and IDFT of a finite length sequence.	[10]	CO1	L2
2	Compute the 6-point DFT of the sequence $x[n] = [1,3,5,7]$. Plot the magnitude spectrum and the phase spectrum.	[10]	CO1	L2
3(a)	Compute the 4-point DFT of $x[n] = [1,2,3,4]$ using matrix method. Plot the magnitude spectrum and the phase spectrum.	[06]	CO1	L2
3(b)	Compute the IDFT of $X[k] = [9, -3 + j1.7321, -3 - j1.7321]$ using matrix method.	[04]	CO1	L2

		Marks	со	RBT
4	The first 5 samples of 8-point DFT of a real 8-point sequence are as follows.	[10]	CO1	L3
	X[k] = [36, -4 + 9.6569j, -4 + 4j, -4 + 1.6569j, -4].			
	Determine the remaining samples of $X[k]$. Evaluate the following without explicitly determining $x[n]$.			
	i) $x[0]$ ii) $x[4]$ iii) $\sum_{n=0}^{7} x[n]$ iv) $\sum_{n=0}^{7} x[n] ^2$			
5	Derive the relationship between DFT and Z-transform of a finite length sequence $x[n], 0 \le n \le N-1$. Compute the Z-transform of the sequence $x[n] = [0.5, 0, 0.5, 0]$. Using Z-transform compute the DFT of $x[n]$.	[10]	CO1	L2
6(a)	Compute the DFT of the sequence $x[n] = 0.5^n$, $0 \le n \le 3$ by evaluating the DFT of $x[n] = a^n$, $0 \le n \le N - 1$ and $0 < a < 1$.	[05]	CO1	L2
6(b)	Prove the periodicity and linearity properties of DFT.	[05]	CO1	L2

		Marks	CO	RRT
		1414113		ND I
4	The first 5 samples of 8-point DFT of a real 8-point sequence are as follows.	[10]	CO1	L3
	X[k] = [36, -4 + 9.6569j, -4 + 4j, -4 + 1.6569j, -4].			
	Determine the remaining samples of $X[k]$. Evaluate the following without explicitly determining $x[n]$.			
	i) $x[0]$ ii) $x[4]$ iii) $\sum_{n=0}^{7} x[n]$ iv) $\sum_{n=0}^{7} x[n] ^2$			
5	Derive the relationship between DFT and Z-transform of a finite length sequence $x[n], 0 \le n \le N-1$. Compute the Z-transform of the sequence $x[n] = [0.5, 0, 0.5, 0]$. Using Z-transform compute the DFT of $x[n]$.	[10]	CO1	L2
6(a)	Compute the DFT of the sequence $x[n] = 0.5^n$, $0 \le n \le 3$ by evaluating the DFT of $x[n] = a^n$, $0 \le n \le N - 1$ and $0 < a < 1$.	[05]	CO1	L2
6(b)	Prove the periodicity and linearity properties of DFT.	[05]	CO1	L2

Solutions

$$X(w) = \sum_{n=-\infty}^{\infty} x(n) e^{jwn}$$

$$X(x) = \sum_{n=-\infty}^{\infty} x(n) e^{jwn}$$

2

06 -			4(20)
K	X(K)	[X(K)]	(X(K)
		16	0
0	16	9.8489	-2.3613
1	-7- 6.9282j		0.4086
2	4+1.7321	4.3589	3.1416
		4	
	-4	4.3589	-0.4086
4	4-1.7321		2.3613
	-7+6.9282j	9.8489	

$$3b = 2(n) = (1,3,5)$$

$$9((0)) = \frac{1}{N} \sum_{k=0}^{N-1} \chi(k)$$

$$= \frac{1}{N} \sum_{k=0}^{N-1} \chi(k) (k) (k)$$

$$9((4)) = \frac{1}{N} \sum_{k=0}^{N-1} \chi(k) (k) (k)$$

$$= 2(0) = x(0)$$
 $= 36$

$$7 = 1 \times (R)^2 = 1 \times (R)^2$$
 $1 \times (R)^2 = 1 \times (R)^2$
 $1 \times (R)^2 = 1 \times (R)^2$

$$X(z) = \begin{cases} N-1 \\ = 2 \\ (n) = 1 \end{cases}$$
 $X(x) = \begin{cases} N-1 \\ N-1 \\ = 2 \\ N-1 \end{cases}$
 $X(x) = \begin{cases} N-1 \\ = 2 \\ N-1 \end{cases}$
 $X(x) = \begin{cases} N-1 \\ = 2 \\ N-1 \end{cases}$
 $X(x) = \begin{cases} N-1 \\ = 2 \\ N-1 \end{cases}$
 $X(x) = \begin{cases} N-1 \\ = 2 \\ N-1 \end{cases}$
 $X(x) = \begin{cases} N-1 \\ = 2 \\ N-1 \end{cases}$
 $X(x) = \begin{cases} N-1 \\ = 2 \\ N-1 \end{cases}$
 $X(x) = \begin{cases} N-1 \\ = 2 \\ N-1 \end{cases}$
 $X(x) = \begin{cases} N-1 \\ = 2 \\ N-1 \end{cases}$
 $X(x) = \begin{cases} N-1 \\ = 2 \\ N-1 \end{cases}$
 $X(x) = \begin{cases} N-1 \\ = 2 \\ N-1 \end{cases}$
 $X(x) = \begin{cases} N-1 \\ = 2 \\ N-1 \end{cases}$
 $X(x) = \begin{cases} N-1 \\ = 2 \\ N-1 \end{cases}$
 $X(x) = \begin{cases} N-1 \\ = 2 \\ N-1 \end{cases}$
 $X(x) = \begin{cases} N-1 \\ = 2 \\ N-1 \end{cases}$
 $X(x) = \begin{cases} N-1 \\ = 2 \\ N-1 \end{cases}$
 $X(x) = \begin{cases} N-1 \\ = 2 \\ N-1 \end{cases}$
 $X(x) = \begin{cases} N-1 \\ = 2 \\ N-1 \end{cases}$
 $X(x) = \begin{cases} N-1 \\ = 2 \\ N-1 \end{cases}$
 $X(x) = \begin{cases} N-1 \\ = 2 \\ N-1 \end{cases}$
 $X(x) = \begin{cases} N-1 \\ = 2 \\ N-1 \end{cases}$
 $X(x) = \begin{cases} N-1 \\ = 2 \\ N-1 \end{cases}$
 $X(x) = \begin{cases} N-1 \\ = 2 \\ N-1 \end{cases}$
 $X(x) = \begin{cases} N-1 \\ = 2 \\ N-1 \end{cases}$
 $X(x) = \begin{cases} N-1 \\ = 2 \\ N-1 \end{cases}$
 $X(x) = \begin{cases} N-1 \\ = 2 \\ N-1 \end{cases}$
 $X(x) = \begin{cases} N-1 \\ = 2 \\ N-1 \end{cases}$
 $X(x) = \begin{cases} N-1 \\ = 2 \\ N-1 \end{cases}$
 $X(x) = \begin{cases} N-1 \\ = 2 \\ N-1 \end{cases}$
 $X(x) = \begin{cases} N-1 \\ = 2 \\ N-1 \end{cases}$
 $X(x) = \begin{cases} N-1 \\ = 2 \\ N-1 \end{cases}$
 $X(x) = \begin{cases} N-1 \\ = 2 \\ N-1 \end{cases}$
 $X(x) = \begin{cases} N-1 \\ = 2 \\ N-1 \end{cases}$
 $X(x) = \begin{cases} N-1 \\ = 2 \\ N-1 \end{cases}$
 $X(x) = \begin{cases} N-1 \\ = 2 \\ N-1 \end{cases}$
 $X(x) = \begin{cases} N-1 \\ = 2 \\ N-1 \end{cases}$
 $X(x) = \begin{cases} N-1 \\ = 2 \\ N-1 \end{cases}$
 $X(x) = \begin{cases} N-1 \\ = 2 \\ N-1 \end{cases}$
 $X(x) = 2 \\ N-1 \end{cases}$
 $X(x) = \begin{cases} N-1 \\ = 2 \\ N-1 \end{cases}$
 $X(x) = \begin{cases} N-1 \\ = 2 \\ N-1 \end{cases}$
 $X(x) = \begin{cases} N-1 \\ = 2 \\ N-1 \end{cases}$
 $X(x) = \begin{cases} N-1 \\ = 2 \\ N-1 \end{cases}$
 $X(x) = \begin{cases} N-1 \\ = 2 \\ N-1 \end{cases}$
 $X(x) = \begin{cases} N-1 \\ = 2 \\ N-1 \end{cases}$
 $X(x) = \begin{cases} N-1 \\ = 2 \\ N-1 \end{cases}$
 $X(x) = \begin{cases} N-1 \\ = 2 \\ N-1 \end{cases}$
 $X(x) = \begin{cases} N-1 \\ = 2 \\ N-1 \end{cases}$
 $X(x) = \begin{cases} N-1 \\ = 2 \\ N-1 \end{cases}$
 $X(x) = \begin{cases} N-1 \\ = 2 \\ N-1 \end{cases}$
 $X(x) = \begin{cases} N-1 \\ = 2 \\ N-1 \end{cases}$
 $X(x) = \begin{cases} N-1 \\ = 2 \\ N-1 \end{cases}$
 $X(x) = \begin{cases} N-1 \\ = 2 \\ N-1 \end{cases}$
 $X(x) = \begin{cases} N-1 \\ = 2 \\ N-1 \end{cases}$
 $X(x) = \begin{cases} N-1 \\ = 2 \\ N-1 \end{cases}$
 $X(x) = \begin{cases} N-1 \\ = 2 \\ N-1 \end{cases}$
 $X(x) = \begin{cases} N-1 \\ = 2 \\ N-1 \end{cases}$
 $X(x) = \begin{cases} N-1 \\ = 2 \\ N-1 \end{cases}$
 $X(x) = \begin{cases} N-1 \\ = 2 \\ N-1 \end{cases}$
 $X(x) = \begin{cases} N-1 \\ = 2 \\ N-1 \end{cases}$
 $X(x) = \begin{cases} N-1 \\ = 2 \\ N-1 \end{cases}$
 $X(x) = \begin{cases} N-1 \\ = 2 \\ N-1 \end{cases}$
 $X(x) = \begin{cases} N-1 \\ = 2 \\ N-1 \end{cases}$
 $X(x) = \begin{cases} N-1 \\ = 2 \\ N-1 \end{cases}$
 $X(x) = \begin{cases} N-1 \\ = 2 \\ N-1 \end{cases}$
 $X(x) = \begin{cases} N-1 \\ = 2 \\ N-1 \end{cases}$
 $X(x) = \begin{cases} N-1 \\ = 2 \\ N-1 \end{cases}$
 $X(x) = \begin{cases} N-1 \\ = 2 \\ N-1 \end{cases}$
 $X(x) = \begin{cases} N-1 \\ = 2 \\ N-1 \end{cases}$
 $X(x) = \begin{cases} N-1 \\$

$$x(n) = (0.5, 0, 0.5, 0)$$

$$x(2) = 0.5 + 0.5 = \frac{2^{2}}{14^{2}} k(42)$$

$$x(k) = 0.5 + 0.5 = \frac{1}{10^{2}} k(42)$$

$$x(k) = a^{n}$$

Ga

6 b