

Semester B.E. Degree Examination, July/August 2022

17CV51

Design of R.C. Structural Elements

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. Use of IS 456, SP16 allowed.

Module-1

- 1 Differentiate between Working Stress method and Limit State Method of RCC design.
 - Explain i) Characteristic load ii) Characteristic strength. (04 Marks)
 - Derive the expression for the area of stress block 0.36 f_{ac} bx_u and depth of centre of compressive force from the extreme fibre in compression 0.42x_u. (10 Marks)

OR

- Explain the factors affecting Short Term and Long term deflection. (06 Marks)
 - A simply supported beam of rectangular section 200 × 450mm overall is reinforced with 3-16mm diameter on tension side at effective depth 420mm spaced @ 50mm centres. The beam supports a load of 10kN/m, Effective span = 5m. Check the beam for limit state of serviceability of cracking by IS -465-2000 method. (14 Marks)

Module-2

- Differentiate between Under reinforced, Over reinforced and Balanced section.
 - Find the depth of Neutral axis of a singly reinforced RC beam of 250mm wide 550mm overall depth. It is reinforced with 4 – bars of 20mm diameter. Use M₂₀ concrete and Fe415 steel. Also check for type of section. Take clear cover as 40mm.
 - A Doubly reinforced beam section is 250mm wide, 500mm deep to the centre of the tensile reinforcement. It is reinforced with 3 bars of 16mm diameter as compression reinforcement at an effective cover of 50mm and 4 bars of 20mm diameter as tensile reinforcement. Using M₂₀ concrete and Fe500 steel. Calculate the moment of Resistance. (10 Marks)

OR

- a. A Doubly reinforced rectangular beam of size 300mm × 600mm, Simply supported at both the ends. The effective cover for both tension and compression steel is 35mm. The effective span is 6.0m. The beam carries a super imposed load of 24kN/m and super imposed dead load of 16kN/m. Use M-20 grade of concrete and HYSD steel Fe - 415. Determine tension and compression reinforcement. (10 Marks)
 - b. A T beam of depth of 450mm has a flange width of 1000mm and depth of 120mm. It is reinforced with 6-20mm \$\phi\$ bars on tension side with a cover of 30mm. If M-20 concrete and Fe – 415 steel are used. Calculate moment of Resistance of beam. Take $b_{\rm w}$ = 300mm.

(10 Marks)

CMRIT LIBRARY BANGALORE - 560 037 Module-3

A simply supported RC beam supports a service live load of 5kN/m over a clear span of 4m. Support width is 300mm. Design the beam for flexure and shear. Check the beam depth for control of deflection using Empirical method. Take M₂₀ and Fe415 and also sketch the reinforcement details. (20 Marks)

OR

6 Design a Rectangular beam 230mm \times 600mm over an effective span of 5m. The superimposed load on the beam is 50kN/m. Effective cover to reinforcement is taken as 50mm. Use M_{20} concrete and Fe415 steel. Sketch the reinforcement details of the section. (20 Marks)

Module-4

7 a. Distinguish between one way slab and two way slab.

(04 Marks)

b. Design a two – way RCC slab for a room 6m × 4m supported on wall 230mm corners are held down. Live load 4kN/m², floor finish 1kN/m². Adopt M₂₀ concrete and Fe415 steel.

(16 Marks)

OR

8 Design a dog legged stairs for an office building in a room measuring 2.8m × 5.8m clear. Vertical distance between the floor is 3.6m. Width of the flight is to be 1.25m. Allow a live load of 3kN/m². Sketch the details of the reinforcement. Use M₂₀ concrete and Fe415 steel. Assume the stairs are supported on 230mm walls at the end of outer edges of landing slabs. (20 Marks)

Module-5

- 9 a. Design a circular column to carry axial load of 1000kN. Use M₂₅ and Fe415. Sketch the reinforcement details. (08 Marks)
 - b. Design a rectangular column subjected to an axial factored load of 1800 kN. Take effective length = 3.2m. Use M_{20} concrete and Fe415 steel, Check for minimum eccentricity.

(12 Marks)

OR

R RANGALORE - 560 0

A Rectangular column $450 \text{mm} \times 600 \text{mm}$ carries a DL of 800 kN and a live load of 1400 kN. The SBC of soil is 150kN/m^2 . Using M_{20} concrete and Fe415 steel. Design a rectangular footing. Sketch the details. (20 Marks)