

GBCS SCHEME

First Semester M.Tech. Degree Examination, Feb./Mar. 2022

ASIC Design

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. With neat flow diagram, explain the steps involved in ASIC design.

(10 Marks)

20EVE12

- b. With neat sketches, explain the following:
 - i) Programmable logic devices
 - ii) Structured gate arrays.

(10 Marks)

OR

- 2 a. With relevant diagram and equations, explain the Conventional Ripple Carry Adder.

 Mention its limitations. (10 Marks)
 - b. Write a short note on:
 - i) I/O cells
 - ii) Cell compilers.

(10 Marks)

Module-2

a. Find the logical effort and logical area of the circuit shown in Fig.Q3(a).

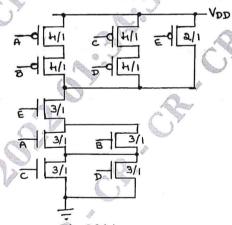


Fig.Q3(a)

(10 Marks)

b. With neat block diagram explain Altera I/O Block.

(10 Marks)

OR

4 a. Derive an expression for optimum path delay.

(10 Marks)

b. Explain Actel Act architecture and Shannon's expansion theorem.

(10 Marks)

Module-3

- 5 a. Explain the following:
 - i) Netlist screeners and its errors
 - ii) Schematic icons and symbols.

(10 Marks)

b. With suitable example, explain Kemighan – Lin Algorithm.

(10 Marks)

OR

With schematic example, explain the hierarchical design. (10 Marks) 6 b. Describe the goals and objectives of each steps in ASIC physical design. (05 Marks) Briefly explain the steps involved in constructive partitioning. (05 Marks) Module-4 (10 Marks) Explain the measurement of delay in floor planning. 7 b. Explain the following: i) Power distribution scheme (10 Marks) ii) Clock planning. OR Explain physical design flow with respect to placement. (10 Marks) b. Briefly explain the following: i) Goals and objectives of placement ii) Timing driven placement method. (10 Marks) Module-5 Explain the following: i) Left edge algorithm ii) Hightower area routing algorithm. (10 Marks) b. Explain circuit extraction and DRC. (10 Marks) Explain the following special routing techniques: 10 a. i) Clock routing ii) Power routing. (10 Marks) b. Explain global routing between blocks. (10 Marks)

CMRIT LIBRARY