USN					

INTERNAL ASSESSMENT TEST – V

Sub:	DIGITAL SIGNAL PROCESSING								18EC52
Date:	08 / 02/ 2022	Duration:	90 mins	Max Marks:	50	Sem:	V	Branch:	ECE

Answer all questions

	^			
		Marks	со	RBT
1	Compute the output $y[n]$ of an LTI system whose impulse response is $h[n] = [1,2,3]$ for the input $x[n] = [1,2,-1,0,1,3,-2,1,3,2,-1,2]$ using overlap-save method. Use 6 point circular convolution.	[10]	CO2	L3
2	Compute the output $y[n]$ of an LTI system whose impulse response is $h[n] = [1,2,3,1]$ for the input $x[n] = [3,2,-1,2,3,-2,1,1,2,-1,0,1]$ using overlap-add method. Use 7 point circular convolution.	[10]	CO2	L3
3	Compute the DFT of $x[n] = [1,2,3,4,4,3,2,1]$ using DIF-FFT.	[10]	CO3	L3

USN					
0.01					

INTERNAL ASSESSMENT TEST – V

Sub:	: DIGITAL SIGNAL PROCESSING							Code:	18EC52
Date:	08 / 02/ 2022	Duration:	ECE	Max Marks:	50	Sem:	V	Branch:	ECE

Answer all questions

	Answer an questions							
		Marks	СО	RBT				
1	Compute the output $y[n]$ of an LTI system whose impulse response is $h[n] = [1,2,3]$ for the input $x[n] = [1,2,-1,0,1,3,-2,1,3,2,-1,2]$ using overlap-save method. Use 6 point circular convolution.	[10]	CO2	L3				
2	Compute the output $y[n]$ of an LTI system whose impulse response is $h[n] = [1,2,3,1]$ for the input $x[n] = [3,2, -1,2,3, -2,1,1,2, -1,0,1]$ using overlap-add method. Use 7 point circular convolution.	[10]	CO2	L3				
3	Compute the DFT of $x[n] = [1,2,3,4,4,3,2,1]$ using DIF-FFT.	[10]	CO3	L3				

		Marks	CO	RBT
4	Compute the IDFT of $X[k] = [12, -2 + 2j, -2, -2 - 2j, 8, -2 + 2j, -2, -2 - 2j]$ using DIF-IFFT.	[10]	CO3	L3
5	Compute the circular convolution of $x[n] = [1,2,3,4]$ and $h[n] = [2,1,2,1]$ using DIT-FFT and DIT-IFFT.	[10]	CO3	L3

		Marks	со	RBT
4	Compute the IDFT of $X[k] = [12, -2 + 2j, -2, -2 - 2j, 8, -2 + 2j, -2, -2 - 2j]$ using DIF-IFFT.	[10]	CO3	L3
5	Compute the circular convolution of $x[n] = [1,2,3,4]$ and $h[n] = [2,1,2,1]$ using DIT-FFT and DIT-IFFT.	[10]	CO3	L3

Solution

y(n) = (3,8,12,9,6,9,8,0,5,7,5,0,1,3,1)

2

