

Internal Assesment Test – V

Sub:	ıb: Information Theory and Coding			Sec	ALL				Code:	18EC54
Date:	07 / 02 / 2022	Duration:	90 mins		Max Marks:	50	Sem:	V	Branch:	ECE

Answer Any FIVE FULL Questions

Marks

10

- 1 Define the terms Self information content, average information content, average rate of information and hence derive the expression for average information content in long independent sequences.
- 10
- 2 Mention different properties of entropy and prove that entropy is additive.

3 The state diagram of a Markov source is shown in the fig. 3. Show that $G_1 \geq G_2 \geq H$.

10

Fig. 3

CMR INSTITUTE OF TECHNOLOGY USN

Internal Assesment Test – V

PT₀

Sub:	Information Theory and Coding			Sec	ALL				Code:	18EC54
Date:	07 / 02 / 2022	Duration:	90 mins N		Max Marks:	50	Sem:	V	Branch:	ECE

Answer Any FIVE FULL Questions

Marks

RBT

1 Define the terms Self information content, average information content, average rate of information and hence derive the expression for average information content in long independent sequences.

2 Mention different properties of entropy and prove that entropy is additive.

10

10

3 The state diagram of a Markov source is shown in the fig. 3. Show that $G_1 \geq G_2 \geq H$.

10

4 Consider a discrete memory less source S = (X, Y, Z) Given its second order extension 10 source symbols and probabilities as given in Table 1, compute the code words, efficiency and redundancy using Shannon-fano algorithm. *Table 1: Data for question 4 and question 5* Symbol Probability Symbol **Probability** XX 0.25 ΥZ 0.06 XY 0.15 ZX 0.10 ΧZ 0.10 ZY 0.06 ΥX 0.15 ZZ0.04 YY 0.09 5 Consider a discrete memory less source S = (X, Y, Z) Given its second order extension 10 L3 source symbols and probabilities as given in Table 1, compute the code words, efficiency and redundancy using Huffman encoding algorithm. 6 Explain the Shannon's encoding algorithm, clearly indicating the steps involved with the 10 L1 help of a simple example. 4 Consider a discrete memory less source S = (X, Y, Z) Given its second order extension 10 source symbols and probabilities as given in **Table 1**, compute the code words, efficiency and redundancy using Shannon-fano algorithm. Table 2: Data for question 4 and question 5 Symbol **Probability** Symbol **Probability** XX 0.25 ΥZ 0.06 XY 0.15 ZX 0.10 ΧZ 0.10 ZY 0.06

-----***

0.04

L3

L1

10

10

ΥX

YY

help of a simple example.

0.15

0.09

and redundancy using Huffman encoding algorithm.

ZZ

source symbols and probabilities as given in Table 1, compute the code words, efficiency

5 Consider a discrete memory less source S = (X, Y, Z) Given its second order extension

6 Explain the Shannon's encoding algorithm, clearly indicating the steps involved with the

Scharue g. Solutions

Self information Content — def
$$I(w) = log(\frac{1}{P}) \longrightarrow 2H$$

And information Content — def

H(s) = $\frac{E}{E}$ Pi log $(\frac{1}{P})$ b (symp)

And And information — def

R = $Y \le X + H(E)$ $\longrightarrow 2H$

devivation

$$S_1 = P_1 N$$

$$S_2 = P_2 N$$

$$S_3 = P_3 N$$

$$S(S_2) = log(\frac{1}{P_2})$$

$$S_1 = P_1 N$$

$$S(S_3) = log(\frac{1}{P_3})$$

$$S(S_1) = log(\frac{1}{P_3})$$

$$S(S_1) = log(\frac{1}{P_3})$$

$$S(S_1) = log(\frac{1}{P_3})$$

$$S(S_2) = log(\frac{1}{P_3})$$

$$S(S_3) = log(\frac{1}{P_3})$$

$$S(S_1) = log(\frac{1}{P_3})$$

$$S(S_2) = log(\frac{1}{P_3})$$

$$S(S_3) = log(\frac{1}{P_3})$$

$$S(S_1) = log(\frac{1}{P_3})$$

$$S(S_2) = log(\frac{1}{P_3})$$

$$S(S_3) = log(\frac{1}{P_3}$$

Scanned with CamSo

(2) properties of entropy Entropy is Continuous function 2. Entropy is symmetric function H(P, (1-P)) = H((1-P),1P) 8. Entropy is measure of uncertainity 4. if only one symbol is edited from the Info source It's entropy 5. H(s) >, H(s) 6. H(s)= log M Additivity property proof -> 5 M. H(s)= 1.992 H'(5) = 2.957

$$H(s) = 1.992$$
 $H(s) = 2.957$
 $H(s) = 2.957$

3/4

H1= 3 109 4 + 1 1094 0.2113 bits/sym ----> 1M

H2: \frac{1}{4} \log4 + \frac{3}{4} \log4 = 0.8118 \log4 = 0.8118 \log4 = \frac{1}{4} \log4 = \frac{1}{4}

- Arrange the probabilities of the given symbols in descending
 - calculate 41

F1:0 Fi: & PK 3.

Find the Binary

Find the Code word.

H(s). T. Find HN. 2. Find efficiency Aug Example -> 4M.