CMR INSTITUTE OF **USN TECHNOLOGY** Internal Assesment Test-V 18EC55 Electromagnetic Waves Code: Sub: 08/02 /2022 Duration: 90 mins Max Marks: 5th Branch: ECE(A,B,C,D)Date: 50 Sem: Answer any FIVE FULL Questions **OBE** Marks CO **RBT** [80] CO3 L2 1.(a) Starting from Gauss's law deduce Poisson's and Laplace's equations. Write Laplace's equations in all three co-ordinate systems. Derive Poisson's and Laplace's expression V.D=Po $\vec{E} = -\vec{\nabla} V \cdot \vec{3}$ $\overrightarrow{\nabla},\overrightarrow{D} = \overrightarrow{\nabla}. (\varepsilon \cdot \overrightarrow{E}) = \varepsilon \cdot (\overrightarrow{\nabla}. \overrightarrow{E}) =$ on $\epsilon_o(\vec{\nabla}.(-\vec{\nabla}v)) = P_a$ 0x -€ , (v) = P. - (+ 1/2 ây + 1/2 âz $=\frac{\partial^2 V}{\partial x^2}+\frac{\partial^2 V}{\partial y^2}+\frac{\partial^2 V}{\partial z^2}$

: equi. @ greduces to,			
$E_0 \nabla^2 V = -P_0$			
Nove if $f_v = 0 \rightarrow \begin{bmatrix} \nabla^2 V = 0 \end{bmatrix} \rightarrow Posesons equation.$ Nove if $f_v = 0 \rightarrow \begin{bmatrix} \nabla^2 V = 0 \end{bmatrix} \rightarrow Laplaces equation. The zero volume charge density, but The start charges, line charge and$			
surface density to exect an exections as somes of the field.			
In xectangular co-ordinate system, $ \nabla^2 V = \frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} $ In cylindrical co-ordinates, [2] [2]			
V2V = + 3p (P3p) + p2 342 322			
In splanted co-ordinates, $ \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \frac{\partial}{\partial x} \left(x^2 \frac{\partial V}{\partial x} \right) + \frac{1}{\sqrt{2} \sin^2 \theta} \frac{\partial}{\partial \theta} \left(\frac{\sin \theta}{\partial \theta} \right) + \frac{1}{\sqrt{2} \sin^2 \theta} \frac{\partial^2 V}{\partial \phi^2} $			
Given vector $V = (12yx^2 - 6z^2x)$. Determine whether the given potential field satisfies Laplace's equation.	[02]	CO3	L

_				
	aiven, V=12yx2-622.			
	$\nabla^2 V = \frac{\partial^2 V}{\partial x^3} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2}.$			
	$\frac{\partial V}{\partial x} = \frac{\partial}{\partial x} \left(12yx^2 - 6z^2x \right) = 24yx - 6z^2$			
	$\frac{\partial^{2} v}{\partial x^{2}} = 24y$ $\frac{\partial^{2} v}{\partial y} = \frac{1}{2} \left(\frac{12y}{x^{2} - 6z^{2}x} \right) = \frac{12x^{2}}{x^{2}}.$			
	$\frac{\partial^2 v}{\partial y^2} = 0$			
	$\frac{\partial^2 v}{\partial y^2} = 0$ $\frac{\partial v}{\partial z} = \frac{\partial}{\partial z} \left(12 y x^2 - 6 z^2 x \right) = -12 z x$			
	\$\frac{1}{2} = -12\times.			
	Conditionally satisfies haplacess ann.			
	Find the capacitance between the two concentric spheres of radii $r = b$, and $r = b$	[10]	CO3	L2
	a, such that b>a using Laplace's equation. It is given that, $V = 0$ at $r = b$ and $V = V_0$ at $r = a$.			
	- v ₀ m 1 - u.			

$\frac{1}{2}\frac{d}{dx}\left(3^{2}\frac{dy}{dx}\right)=0$
no dr dr)
$\frac{d}{dx}\left(x^{2}\frac{dy}{dx}\right)=0$
Integrating, d (512 dv)=0
on $3^2 \frac{dV}{dn} = C_1$
0.01
c, -> constant of integration. Note
$dV = c_1 \cdot \frac{dq}{q^2}$ $V = 0$ at $q = 1$
May ab
$- \int dv = c_1 \int \frac{ds}{s^2}$
ox $V = C_1 \left[-\frac{1}{5} \right] + C_2$
ca > contact of integration.
$c_2 \Rightarrow contract < c_2$ $0 = c_1 \left(-\frac{1}{b} \right) + c_2$
(2)
$v_0 = c_1(-\frac{1}{a}) + c_2$ (2)
sultruting O from &,
$c \left(-\frac{1}{2}\right) + \frac{c_1}{c_1}$
$v_0 = c_1(-\frac{1}{\alpha}) + \frac{c_1}{4\alpha}$
or $v_0 = c_1\left(\frac{1}{4} - \frac{1}{\alpha}\right)$.
·. c. = Vo
··· c1 = (t-ta)
C - C1 - Vo - +
$c_2 = \frac{c_1}{b} = \frac{v_0}{(\frac{1}{b} - \frac{1}{a})} \cdot \frac{1}{b}$

[$V = \frac{V_0}{(\frac{1}{b} - \frac{1}{b})} + \frac{V_0}{(\frac{1}{b} - \frac{1}{b})} = $	[08]	CO3	L2
---	--	------	-----	----

Uniquences Tleasen:	
Statements of a solution to haplaces	
equation can be found that satisfies the	
boundary conditions, then the solution is	
unique.	
Let's assume haplace's agnotion has two	
solutions, V, and V2.	
₹V, = 0	
$\nabla^2 V_2 = 0$	
$\sqrt{(v_1-v_2)} = 0 0$	
boundary be Vile = Ve	
Value of V2 " " be V2h=Vh	
Value of ve - " " the boundary	
V give potential on the	

Vector identity,	
$\vec{\nabla}(\vec{V},\vec{D}) = \vec{V}(\vec{V},\vec{D}) + \vec{D}.(\vec{\nabla}\vec{V}) - \vec{D}$	
and the ventor he $\nabla (V_1 - V_2)$	
· From B,	
$\overrightarrow{\nabla}.\left((V_1-V_2)\overrightarrow{\nabla}(V_1-V_2)\right)=(V_1-V_2)\left(\overrightarrow{\nabla}.\overrightarrow{\nabla}(V_1-V_2)\right)$	
+ \$\vartheta(\vartheta_1-\vartheta_2). \$\vartheta(\vartheta_1-\vartheta_2)\$	
$\overrightarrow{\nabla}.\left(\left(V_{1}-V_{2}\right)\overrightarrow{\nabla}\left(V_{1}-V_{2}\right)\right)=\left(V_{1}-V_{2}\right)\overrightarrow{\nabla}\left(\left(V_{1}-V_{2}\right)\right)^{2}+\left[\overrightarrow{\nabla}\left(\left(V_{1}-V_{2}\right)\right)^{2}\right]$	
I depating over the volume embosed by the	
boundary surface area,	
$\iiint \vec{\nabla} \cdot \left((v_1 - v_2) \vec{\nabla} (v_1 - v_2) \right) d\theta = \iiint \vec{\nabla} (v_1 - v_2) \vec{\nabla} d\theta$	
[According to divergence blacken, SST. Ada = # de	
suface integral over the surface at which the	
boundaries are specifical,	
\(\frac{1}{\varphi_1 - \varphi_2\sqrt{\varphi_2 \sqrt{\varphi_2 \sqrt{\	
$\int \int \left[\vec{\nabla} (v_1 - v_2) \right]^2 dv = 0$	

3 (h)	If an alegal 11 zero, - aither the integrand 12 zero or that the - at is boly the and the so that the - at is boly the and the sounds each offer. overall contribution cancels each offer. overall contribution of the -ve. or of $(V_1 - V_2)^2 = 0$ or of $(V_1 - V_2) = 0$ or of $(V_1 - V_2) = 0$ or of the boundary, At a point on the boundary, $V_1 - V_2 = V_1 \cdot b - V_2 \cdot b = 0$ $V_1 - V_2 = V_1 \cdot b - V_2 \cdot b = 0$ insplaces solution is unique, if that solveys the same boundary conditions.	[02]	CO3	13
	Determine whether or not the following potential field satisfies Laplace's equation $V = \rho \cos \phi + z$.	[02]	CO3	L3

$\forall^2 V = \frac{1}{p} \frac{\partial}{\partial p} \left(p \frac{\partial}{\partial v} \right) + \frac{1}{p^2} \frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial x^2}$		
dv = d (P con++7) = cont.		
2 (PC084) = c084		
1 st term = $\frac{1}{p} \cos \phi$.		
$\frac{\partial V}{\partial \phi} = \frac{\partial}{\partial \phi} \left(\rho \cos \phi + 2 \right) = -\rho \cos \phi$		
$\frac{\partial^2 V}{\partial \phi^2} = \frac{\partial}{\partial \phi} \left(-\rho \cdot \omega v \phi \right) = -\rho \cdot \omega v \phi$		
and term = p = 0 = - cosq.		
$\frac{\partial V}{\partial z} = \frac{\partial}{\partial z} \left(\rho_{\nu s} \phi + z \right) = 1$		
$\frac{\partial^2 V}{\partial z^2} = 0 = 31d term$		
$\frac{\partial z^2}{\partial z^2}$		
$\frac{\partial^2 v}{\partial v} = \frac{\cos \phi}{\rho} - \frac{\cos \phi}{\rho} + 0 = 0$ $\frac{\partial^2 v}{\partial v} = \frac{\cos \phi}{\rho} - \frac{\cos \phi}{\rho} + 0 = 0$ $\frac{\partial^2 v}{\partial v} = \frac{\cos \phi}{\rho} - \frac{\cos \phi}{\rho} + 0 = 0$ $\frac{\partial^2 v}{\partial v} = \frac{\cos \phi}{\rho} - \frac{\cos \phi}{\rho} + 0 = 0$ $\frac{\partial^2 v}{\partial v} = \frac{\cos \phi}{\rho} - \frac{\cos \phi}{\rho} + 0 = 0$		
. Laplace's em		
4.(a) Consider, the two planes of parallel plate capacitor are separated by a distance 'd'	[07] CO3	L2

4.(a)	Consider, the two planes of parallel plate capacitor are separated by a distance 'd'	[07]	CO3	L2
	and maintained at potential '0' and V ₀ respectively. Assuming negligible fringing			
	effect, determine potential at any point between the plates. Also, determine the			
	capacitance of the parallel plate capacitor.			

Area of the capacitor place $V=V$ $X=0$			
$C_1 \rightarrow cantant of integration$ $\int dV = C_1 dx$ $Integrating, V = C_1 x + C_2$ $0 = C_1 \cdot 0 + C_2 \Rightarrow C_2 = 0$			
$\vec{E} = -\vec{\nabla} \vec{V} = -\frac{\partial V}{\partial x} \hat{a}_{x}$ $= -\frac{\partial}{\partial x} \left(\frac{V_{0}}{A} x \right) \hat{a}_{x} = \frac{-V_{0}}{A} \hat{a}_{x}$ $\vec{D} = \vec{E} \vec{E} = -\frac{EV_{0}}{A} \hat{a}_{x}$ $\vec{P}_{8} = \vec{D}_{N} = -\frac{EV_{0}}{A}$ $\text{Let, one of the capacitor plate be S.}$ $\vec{Q} = \vec{P}_{8} \cdot \vec{S} = -\frac{EV_{0}}{A} \vec{S}$ $\vec{C} = \frac{\vec{Q}}{V_{0}} = \frac{-ES}{A} \cdot \vec{F}_{0} \cdot \vec{A}$			
4.(b) State and explain Biot-Savart's law.	[03]	CO3	L1

Bid-Savitis less - Let's coulder a differented current element as a varietized and a different conductor filementary conductor, where a filementary conductor is the limiting case of a childrent conductor of circular cross-section as the radius approaches of circular cross-section as the radius approaches are length of the filement of. The Book Saviets law length of the filement of the product of the mag. of the then states that, at any point P the rag, of the current, is propositional to the product of the current, the may of the differential length and the sine of the angle byte the filement and a line connecting the planest to the point P at which the field is derived. Also the negative of the mag. field intensity is inversely propositional to the square of the distance from the differential element to point P. The Iddi x are the content of the distance from the differential element to point P. The Iddi x are find identity produced by a differential ewent element I, dli. The direction of dlip is into the page.			
5. Derive an expression for magnetic field intensity at a point P due to a finite long straight filament carrying a current I.	[10]	CO3	L2

to to a facility	
Magnetic Freld Intensity due to a funite	
programme arrest I.	
Magnetic treed	
Brot-savates lane	
BAR	
de Z2 dH = Ide X axi2	
22 JH = Idi x ariz 471 R/2	
IN IN PRIS	
Rie Maria	
21 2/22 different Here, de de as	
10 Pap P R12 (Pap - 2'az)	
1 12 (1 0)	
12/2 × (2) - 7/2)	
$\frac{1}{dH} = \frac{\pi d z' \hat{a}_2 \times (P \hat{a}_p - z' \hat{a}_2)}{4\pi (e^2 + z'^2)^{3/2}}$	
$dH = \frac{4\pi (p^2 + z'^2)^{3/2}}{4\pi (p^2 + z'^2)^{3/2}}$	
$\frac{d\vec{H}}{dn(\rho^2+z'^2)^{3/2}}$	
or dt - (n/02+2/2)3/2	
The total interests at P due to finite	
I teruty at Pone 10	
.: The total am	
The state of the s	
20 10 at	
· (1) [-T AZ / 13	
$H = \int dH = \int_{Z_1}^{Z_2} dz' \rho' \hat{a} d$ $Z_1 = \int_{Z_1}^{Z_2} dz' \rho' \hat{a} d$	
Paul Royal	
Let, Z = P tan Q Z Rough	
: dz = Pseedda P	
$Z_1 = P tand$	
$\alpha_{S} \neq z_{1} \alpha = \alpha_{1}$	
$2^{l}=2_{2}$, $\alpha=\alpha_{2}$ $Z_{2}=f$ tanks	

= IP	$\int \frac{If}{4\pi} \frac{\rho \sec^2 \alpha d\alpha}{(\rho^2 + \sigma^2 \rho^2 \tan^2 \alpha)^{3/2}} \frac{a_{\phi}}{a_{\phi}}$ $\int \frac{\rho \sec^2 \alpha d\alpha}{\rho^2 \sec^2 \alpha} \frac{d\alpha}{\alpha} \frac{a_{\phi}}{\rho^2 \cos^2 \alpha} \frac{d\alpha}{\alpha} \frac$			
6.(a) Discuss the scala	ar and vector magnetic potential.	[06]	CO3	L2

# Explain scalar and vector magnetic potential	
Scalar Magnetic Potential:	
passynated as Vm	
Ten dof? should not contended our previous	
a of the state of	
$\forall x (-\nabla V_m) = 0$	
If H to be defined as H=(-Vm) Her I should be zero throughout the region then I should be zero throughout the region in which scalar may potential (Vm) is defined.	
1) ie $\vec{H} = -\vec{\nabla} V_m (\vec{J} = 0)$	
2 Vm satisfies Laflace's agm. \[\tilde{\tau} \tilde{\text{H}} = 0 \text{in free space} \] \[\tilde{\tau} \tilde{\text{B}} = \ho \tilde{\text{V}} \tilde{\text{H}} = 0 \text{(in free space)} \]	
$\nabla (-\nabla \nabla m)^2$	
or ho V. (VVm)=0	
$ \begin{array}{cccc} & & & & & & & & & & & & \\ & & & & & &$	

For a considerable, a CPZh

For a considerable, a CPZh

Then
$$H = \frac{1}{2\pi I}$$
 and

We know, $H = -\overline{V}V_{m}$

is: $\frac{3V_{m}}{3\pi I} = -\frac{1}{2\pi}$

They share, $V_{m} = -\frac{1}{2\pi}$

They share and $V_{m} = -\frac{1}{2\pi}$

They share a share a share and $V_{m} = -\frac{1}{2\pi}$

They share a share

6.(b) State and prove Stoke's theorem.	[04]	CO3	L2
Stoker theorem			
van sufaces			
AST STATE OF THE S			
The surface S is bushen up into in exemental			
sufaces of over ds. I to one of the			
suffres of over 25. Applying the def? of out to one of the			
inclement			
$ \oint \overrightarrow{H} \cdot \overrightarrow{U} = (\overrightarrow{\nabla} \times \overrightarrow{H})_{N} = 0 $			
N > indicating right hard normal to the surface.			
the surface.			
11 -> closed point			
1 wit verter			
From O, & H. Jas = (VXH): an.			
ON GH. WAS = (PXH) (QN OS) = (PXH). IS			
0+ \$H. Was = (₹XH). 03 2			
We evaluate the circulation for every os.			
interior wall is colored			
1: a tim .			
- so some cancellation occurs.			
- only ontide boundary no cincellation.			
る F.			
I us taken and on the perimeter of 5.			
II is token			
7. Derive point form of Ampere's Law.	[10]	CO3	L2

$$\frac{\partial H}{\partial x} = \frac{\partial H_{0}}{\partial x} \left(\frac{\partial x \partial x}{\partial x} \right) - \frac{\partial H_{0}}{\partial x} \left(\frac{\partial x \partial y}{\partial y} \right)$$

$$= \frac{\partial H_{0}}{\partial x} \left(\frac{\partial X \partial y}{\partial x} \right) - \frac{\partial H_{0}}{\partial x} \left(\frac{\partial x \partial y}{\partial y} \right)$$

$$= \left(\frac{\partial H_{0}}{\partial x} - \frac{\partial H_{0}}{\partial x} \right) - \frac{\partial H_{0}}{\partial y} \left(\frac{\partial x \partial y}{\partial y} \right)$$

$$= \left(\frac{\partial H_{0}}{\partial x} - \frac{\partial H_{0}}{\partial x} \right) - \frac{\partial H_{0}}{\partial y} \left(\frac{\partial x \partial y}{\partial y} \right)$$

$$= \left(\frac{\partial H_{0}}{\partial x} - \frac{\partial H_{0}}{\partial x} \right) - \frac{\partial H_{0}}{\partial y}$$

$$= \left(\frac{\partial H_{0}}{\partial x} - \frac{\partial H_{0}}{\partial y} \right) = \frac{\partial H_{0}}{\partial y}$$

$$= \frac{\partial H_{0}}{\partial x} - \frac{\partial H_{0}}{\partial y}$$

$$= \left(\frac{\partial H_{0}}{\partial x} - \frac{\partial H_{0}}{\partial y} \right) = \frac{\partial H_{0}}{\partial y}$$

$$= \frac{\partial H_{0}}{\partial x} - \frac{\partial H_{0}}{\partial x}$$

$$= \frac{\partial H_{0}}{\partial x} -$$

			1	
	cul-			
	- I do vertor is a vertos and			
	1 = 0 Example to Angle			
	limit of the mon - all both in			
	integral of the that component desired			
	and the area enclosed, as the path			
	eloubles to zero - & H. di			
	(coul H) = lun o OSN.			
	USN 3 planer are enclosed by the closed			
	path. 6H. dl = (Ho - bHx)			
	(Notes day of dray (or day			
	L an ân ân ân			
	$\Delta \chi_{11} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix}$			
	Hx Hy Hz			
	$= \frac{\partial x}{\partial x} \left(\frac{\partial Hz}{\partial y} - \frac{\partial Hz}{\partial Hz} \right) + \frac{\partial z}{\partial z} \left(\frac{\partial Hx}{\partial Hx} - \frac{\partial Hz}{\partial x} \right)$			
	- + Âz (3Hy - 8Hx)			
	: combining O, 2 and 3 we get,			
	and $\vec{H} = \left(\frac{\partial H_z}{\partial \partial} - \frac{\partial H_z}{\partial z}\right) \hat{a}_x + \left(\frac{\partial H_x}{\partial z} - \frac{\partial H_z}{\partial x}\right) \hat{a}_y$			
	$+\left(\frac{\delta H_{\delta}}{\delta \lambda} - \frac{\delta H_{\delta}}{\delta \lambda}\right) \alpha_{\delta}$			
	= J2 ax + Jy ay + Jz az = F			
	or $\overrightarrow{\nabla} \times \overrightarrow{H} = \overrightarrow{J} \longrightarrow Point form of Ampero's law.$			
	A J			
8.	Verify Stoke's theorem for the field $\mathbf{H} = 6xy\mathbf{a}_x - 3y^2\mathbf{a}_y(\mathbf{A/m})$ and the rectangular path around the region $2 \le x \le 5$, $-1 \le y \le 1$, $z=0$.	[10]	CO3	L3
	Let the positive direction of ds be a_z .			
1		1	I	1

$$\oint \vec{H} \cdot \vec{A} = -63 - 2 + 2 - 63$$

$$= -126$$

$$(\vec{\nabla} \times \vec{H}) = \begin{vmatrix} \hat{a}_{x} & \hat{a}_{y} & \hat{a}_{z} \\ \frac{1}{2x} & \frac{1}{3y} & \frac{1}{3z} \\ \frac{1}{3x} & \frac{1}{3y} & \frac{1}{3z} \\ \frac{1}{3y} & \frac{1}{3z} \\ \frac{1}{3y} & \frac{1}{3z} \end{vmatrix} = \begin{pmatrix} \hat{a}_{x} & \hat{a}_{y} & \hat{a}_{z} \\ \frac{1}{3y} & \frac{1}{3z} \\ \frac{1}{3y} & \frac{1}{3z} \\ \frac{1}{3y} & \frac{1}{3z} \end{vmatrix} = \begin{pmatrix} \hat{a}_{x} & \hat{a}_{x} & \hat{a}_{y} & \hat{a}_{z} \\ \frac{1}{3y} & \frac{1}{3z} & \frac{1}{3z} \\ \frac{1}{3y} & \frac{1}{3z} & \frac{1}{3z} \end{pmatrix} = -3 \begin{bmatrix} 25 - 4 \end{bmatrix} \begin{bmatrix} 1 - (-1) \end{bmatrix} = -3 \times 21 \times 2$$

$$(\vec{\Phi} \cdot \vec{H} \cdot \vec{d} \cdot \vec$$