
 

 

1a. A typical design flow for designing VLSI IC circuits is shown in Figure below 

 



 

In any design, specifications are written first. Specifications describe abstractly the functionality, 

interface, and overall architecture of the digital circuit to be designed. A behavioral description is 

then created to nalyse the design in terms of functionality, performance, compliance to standards, 

and other high-level issues. They are written using HDLs. The behavioral description is manually 

converted to an RTL description in an HDL. The designer has to describe the data flow that will 

implement the desired digital circuit. Logic synthesis tools convert the RTL description to a gate-

level netlist. A gate-level netlist is a description of the circuit in terms of gates and connections 

between them. The gate-level netlist is input to an Automatic Place and Route tool, which creates 

a layout. The layout is verified and then fabricated on chip. Thus, most digital design activity is 

concentrated on manually optimizing the RTL description of the circuit. Behavioral synthesis tools 

have begun to emerge recently. These tools can create RTL descriptions from a behavioral or 

algorithmic description of the circuit. 
 

1b. 

 

 

 

1c 

1. Start design of digital circuits using HDL at an RTL level, because logic synthesis tools 

can create gate-level netlists from RTL level des 

2. Behavioral synthesis helps designers to design directly in terms of algorithms and the 

behavior of the circuit, and then use CAD tools to do the translation and optimization in each 



phase of the design. 

3. Formal verification techniques are also appearing on the horizon. Formal verification 

applies formal mathematical techniques to verify the correctness of Verilog HDL descriptions 

and to establish equivalency between RTL and gate-level netlists. 

4. Designers can mix gate-level description directly into the RTL description to achieve 

optimum results. 

5. System-level design can be a mixed bottom-up methodology where the designers use either 

existing Verilog HDL modules, basic building blocks, or vendor-supplied core blocks to 

quickly bring up their system simulation. This is done to reduce development costs and 

compress design schedules. 
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3bExplain the following data types with an example in verilog: 

 

(i) Nets: Nets represent connections between hardware elements. Just as in real circuits, nets 

have values continuously driven on them by the outputs of devices that they are connected to. 

Nets are declared primarily with the keyword wire. 

Example: 

wire a; //Declare net a for the above circuit 

wire b,c; //Declare two wires b,c for the above circuit 

wire d = l’b0; //Net d is fixed to logic value 0 at declaration. 

 

(ii) Register: Registers represent data storage elements. Registers retain value until another 

value is placed onto them. Unlike a net, a register does not need a driver. Verilog registers do 

not need a clock as hardware 

registers do. Values of registers can be changed anytime in a simulation by assigning a new 

value to the register. Register data types are commonly declared by the keyword reg. The 

default value for a reg data type is ‘x’. 

Example: 

reg reset; //declare a variable reset that can hold its value 

initial //this construct will be discussed later 

begin 

reset = l’b1; //initialize reset to 1 to reset the digital circuit. 

#100 reset = l’b0; //after 100 time units reset is deasserted. 

End 

 

 (iii) Integers: 

An integer is a general purpose register data type used for manipulating quantities. Integers 

are declared by the keyword integer. The default width for an integer is the host-machine 

word size, which is implementation specific but is at least 32-bits. Registers declared as data 

type ‘reg’ store values as unsigned quantities, whereas integers store values as signed 



quantities. 

Example: 

integer counter; //general purpose variable used as a counter. 

Initial 

counter = -1; 
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5b  

i) 0&1&1&1=0 

ii) 1100 

iii) 10011001 

iv) 1110 

v) 1111 

vi) 111111=63d 

vii) 1 
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Ans. 6a.  

 

Verilog Code:- 

 

module mux4_to_1 (out, i0, i1, i2, i3, s1, s0); 

// Port declarations from the I/O diagram 

output out; 

input i0, i1, i2, i3; 



input s1, s0; 

// Internal wire declarations 

wire s1n, s0n; 

wire y0, y1, y2, y3; 

// Gate instantiations 

// Create s1n and s0n signals. 

not (s1n, s1); 

not (s0n, s0); 

// 3-input and gates instantiated 

and (y0, i0, s1n, s0n); 

and (y1, i1, s1n, s0); 

and (y2, i2, s1, s0n); 

and (y3, i3, s1, s0); 

// 4-input or gate instantiated 

or (out, y0, y1, y2, y3); 

endmodule 

 

Stimulus:- 

module stimulus; 

// Declare variables to be connected 

// to inputs 

reg IN0, IN1, IN2, IN3; 

84 

reg S1, S0; 

// Declare output wire 

wire OUTPUT; 

// Instantiate the multiplexer 

mux4_to_1 mymux(OUTPUT, IN0, IN1, IN2, IN3, S1, S0); 

// Stimulate the inputs 

// Define the stimulus module (no ports) 

initial 

begin 

// set input lines 

IN0 = 1; IN1 = 0; IN2 = 1; IN3 = 0; 

#1 $display("IN0= %b, IN1= %b, IN2= %b, IN3= %b\n",IN0,IN1,IN2,IN3); 

// choose IN0 

S1 = 0; S0 = 0; 

#1 $display("S1 = %b, S0 = %b, OUTPUT = %b \n", S1, S0, OUTPUT); 

// choose IN1 

S1 = 0; S0 = 1; 

#1 $display("S1 = %b, S0 = %b, OUTPUT = %b \n", S1, S0, OUTPUT); 

// choose IN2 

S1 = 1; S0 = 0; 

#1 $display("S1 = %b, S0 = %b, OUTPUT = %b \n", S1, S0, OUTPUT); 



// choose IN3 

S1 = 1; S0 = 1; 

#1 $display("S1 = %b, S0 = %b, OUTPUT = %b \n", S1, S0, OUTPUT); 

end 

endmodule 

 

Output:- 

The output of the simulation is shown below. Each combination of the select signals is 

tested. 

IN0= 1, IN1= 0, IN2= 1, IN3= 0 

S1 = 0, S0 = 0, OUTPUT = 1 

S1 = 0, S0 = 1, OUTPUT = 0 

S1 = 1, S0 = 0, OUTPUT = 1 

S1 = 1, S0 = 1, OUTPUT = 0 

 

Ans.6b 

Gate-level diagram has to be made first and then code has to be written as:- 

module fulladd4(sum, c_out, a, b, c_in); 

// Inputs and outputs 

output [3:0] sum; 

output c_out; 

input [3:0] a,b; 

input c_in; 

// Internal wires 

wire p0,g0, p1,g1, p2,g2, p3,g3; 

wire c4, c3, c2, c1; 

// compute the p for each stage 

assign p0 = a[0] ^ b[0], 

p1 = a[1] ^ b[1], 

p2 = a[2] ^ b[2], 

p3 = a[3] ^ b[3]; 

// compute the g for each stage 

assign g0 = a[0] & b[0], 

g1 = a[1] & b[1], 

g2 = a[2] & b[2], 

g3 = a[3] & b[3]; 

// compute the carry for each stage 

// Note that c_in is equivalent c0 in the arithmetic equation for 

// carry lookahead computation 

assign c1 = g0 | (p0 & c_in), 

c2 = g1 | (p1 & g0) | (p1 & p0 & c_in), 

c3 = g2 | (p2 & g1) | (p2 & p1 & g0) | (p2 & p1 & p0 & c_in), 

c4 = g3 | (p3 & g2) | (p3 & p2 & g1) | (p3 & p2 & p1 & g0) | 

(p3 & p2 & p1 & p0 & c_in); 

// Compute Sum 

assign sum[0] = p0 ^ c_in, 



sum[1] = p1 ^ c1, 

sum[2] = p2 ^ c2, 

sum[3] = p3 ^ c3; 

// Assign carry output 

assign c_out = c4; 

endmodule 

 

 

Ans. 7a.  

Blocking assignment 

Blocking assignment statements are executed in the order they are specified in a sequential block. A 

blocking assignment will not block execution of statements that follow in a parallel block. The = 

operator is used to specify blocking assignments. 

Example:- Blocking Statements 
reg x, y, z; 

reg [15:0] reg_a, reg_b; 

integer count; 

//All behavioral statements must be inside an initial or always block 

initial 

begin 

x = 0; y = 1; z = 1; //Scalar assignments 

count = 0; //Assignment to integer variables 

reg_a = 16'b0; reg_b = reg_a; //initialize vectors 

#15 reg_a[2] = 1'b1; //Bit select assignment with delay 

#10 reg_b[15:13] = {x, y, z} //Assign result of concatenation 

to 

// part select of a vector 

count = count + 1; //Assignment to an integer (increment) 

end 

 

The statement y = 1 is executed only after x = 0 is executed. The behavior in a particular block is 

sequential in a begin-end block if blocking statements are used, because the statements can execute 

only in sequence. The statement count = count+ 1 is executed last. The simulation times at which the 

statements are executed are as follows: 

• All statements x = 0 through reg_b = reg_a are executed at time 0 

• Statement reg_a[2] = 0 at time = 15 

• Statement reg_b[15:13] = {x, y, z} at time = 25 

• Statement count = count + 1 at time = 25 

• Since there is a delay of 15 and 10 in the preceding statements, count = count + 1 will be executed at 

time = 25 units 

 

Nonblocking Assignments 



Nonblocking assignments allow scheduling of assignments without blocking execution of the 

statements that follow in a sequential block. A <= operator is used to specify nonblocking assignments. 

This operator has the same symbol as a relational operator,  less_than_equal_to. The operator <= is 

interpreted as a relational operator in an expression and as an assignment operator in the context of a 

nonblocking assignment. To illustrate the behavior of nonblocking statements and its difference from 

blocking statements, let us consider example where we convert some blocking assignments to 

nonblocking assignments, and observe the behavior. 

Example Nonblocking Assignments 
reg x, y, z; 

reg [15:0] reg_a, reg_b; 

integer count; 

//All behavioral statements must be inside an initial or always block 

initial 

begin 

x = 0; y = 1; z = 1; //Scalar assignments 

count = 0; //Assignment to integer variables 

reg_a = 16'b0; reg_b = reg_a; //Initialize vectors 

reg_a[2] <= #15 1'b1; //Bit select assignment with delay 

reg_b[15:13] <= #10 {x, y, z}; //Assign result of concatenation 

//to part select of a vector 

count <= count + 1; //Assignment to an integer (increment) 

end 

 

In this example, the statements x = 0 through reg_b = reg_a are executed sequentially at time 0. Then 

the three nonblocking assignments are processed at the same simulation time. 

1. reg_a[2] = 0 is scheduled to execute after 15 units (i.e., time = 15) 

2. reg_b[15:13] = {x, y, z} is scheduled to execute after 10 time units (i.e., 

time = 10) 

3. count = count + 1 is scheduled to be executed without any delay (i.e., time = 0) 

 

Thus, the simulator schedules a nonblocking assignment statement to execute and continues to the next 

statement in the block without waiting for the nonblocking statement to complete execution. Typically, 

nonblocking assignment statements are executed last in the time step in which they are scheduled, that 

is, after all the blocking assignments in that time step are executed. 

 

Ans. 7b. 

 

 

Code for Clock generation 

 

module gen_clk(clock); 

reg clock; 

initial 

begin 

clock = 1'b0; 

forever #10 clock = ~clock; //Clock with period of 20 units 

end 

endmodule 
 

 

 



 

Ans. 7c 

 
Tasks and functions serve different purposes in Verilog. 

 

 
 

 

 
 

Ans.8a  

 

Block statements are used to group multiple statements to act together as one.  

There are two types of blocks: sequential blocks and parallel blocks. 

Sequential blocks 

The keywords begin and end are used to group statements into sequential blocks. Sequential blocks 

have the following characteristics: 

• The statements in a sequential block are processed in the order they are specified. A statement is 

executed only after its preceding statement completes execution (except for nonblocking assignments 

with intra-assignment timing control). 

• If delay or event control is specified, it is relative to the simulation time when the previous statement 

in the block completed execution. 

 

Statements in the sequential block execute in order. In Illustration 1, the final values are x = 0, y= 1, z 

= 1, w = 2 at simulation time 0. In Illustration 2, the final values are the same except that the simulation 

time is 35 at the end of the block. 

 

Example Sequential Blocks 
//Illustration 1: Sequential block without delay 

reg x, y; 



reg [1:0] z, w; 

initial 

begin 

x = 1'b0; 

y = 1'b1; 

z = {x, y}; 

w = {y, x}; 

152 
end 

//Illustration 2: Sequential blocks with delay. 

reg x, y; 

reg [1:0] z, w; 

initial 

begin 

x = 1'b0; //completes at simulation time 0 

#5 y = 1'b1; //completes at simulation time 5 

#10 z = {x, y}; //completes at simulation time 15 

#20 w = {y, x}; //completes at simulation time 35 

end 

 

Parallel blocks 

Parallel blocks, specified by keywords fork and join, provide interesting simulation features. 

Parallel blocks have the following characteristics: 

• Statements in a parallel block are executed concurrently. 

• Ordering of statements is controlled by the delay or event control assigned to each statement. 

• If delay or event control is specified, it is relative to the time the block was entered. 

 

All statements in a parallel block start at the time when the block was entered. Thus, the order in 

which the statements are written in the block is not important. 

Example  Parallel Blocks 
//Example 1: Parallel blocks with delay. 

reg x, y; 

reg [1:0] z, w; 

initial 

fork 

x = 1'b0; //completes at simulation time 0 

#5 y = 1'b1; //completes at simulation time 5 

#10 z = {x, y}; //completes at simulation time 10 

#20 w = {y, x}; //completes at simulation time 20 

join 

 

 

The result of simulation remains the same except that all statements start in parallel at time 0. Hence, 

the block finishes at time 20 instead of time 35. 

Parallel blocks provide a mechanism to execute statements in parallel. However, it is important to be 

careful with parallel blocks because of implicit race conditions that might arise if two statements that 

affect the same variable complete at the same time. 
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4-to-1 Multiplexer with Case Statement 
module mux4_to_1 (out, i0, i1, i2, i3, s1, s0); 
// Port declarations from the I/O diagram 

output out; 

input i0, i1, i2, i3; 

input s1, s0; 

reg out; 

always @(s1 or s0 or i0 or i1 or i2 or i3) 

case ({s1, s0}) //Switch based on concatenation of control signals 

2'd0 : out = i0; 

2'd1 : out = i1; 

2'd2 : out = i2; 

2'd3 : out = i3; 

default: $display("Invalid control signals"); 

endcase 

endmodule 

 

 
 

Ans.9a 

 

The keywords assign and deassign are used to express the first type of procedural continuous 

assignment. The left-hand side of procedural continuous assignments can be only be a register or a 

concatenation of registers. It cannot be a part or bit select of a net or an array of registers. Procedural 

continuous assignments override the effect of regular procedural assignments. Procedural continuous 

assignments are normally used for controlled periods of time. 

 

D-Flipflop with Procedural Continuous Assignments 
module edge_dff(q, qbar, d, clk, reset); 

output q,qbar; 

input d, clk, reset; 

reg q, qbar; //declare q and qbar are registers 

always @(negedge clk) //assign value of q & qbar at active edge of clock. 

begin 



q = d; 

qbar = ~d; 

end 

always @(reset) //Override the regular assignments to q and qbar 

//whenever reset goes high. Use of procedural continuous assignments. 

if(reset) 

begin  

assign q = 1'b0; 

assign qbar = 1'b1; 

end 

else 

begin //If reset goes low, remove the overriding values by deassigning the    

//registers. After this the regular assignments q = d and qbar = ~d will be able  

//to change the registers on the next negative edge of clock. 

deassign q; 

deassign qbar; 

end 

endmodule 

 

In above code, we overrode the assignment on q and qbar and assigned new values to them when the 

reset signal went high. The register variables retain the continuously assigned value after the deassign 

until they are changed by a future procedural assignment. The assign and deassign constructs are now 

considered to be a bad coding style and it is recommended that alternative styles be used in Verilog 

HDL code. 

 

Ans. 9b 

Parameters can be defined in a module definition However, during compilation of Verilog modules, 

parameter values can be altered separately for each module instance. This allows us to pass a distinct 

set of parameter values to each module during compilation regardless of predefined parameter values. 

There are two ways to override parameter values: through the defparam statement or through module 

instance parameter value assignment. 

 

defparam Statement 
Parameter values can be changed in any module instance in the design with the keyword defparam. 

The hierarchical name of the module instance can be used to override parameter values. 

 

Example Defparam Statement 
//Define a module hello_world 

module hello_world; 

parameter id_num = 0; //define a module identification number = 0 

initial //display the module identification number 

$display("Displaying hello_world id number = %d", id_num); 

endmodule 

 

//define top-level module 

module top; 

//change parameter values in the instantiated modules 

//Use defparam statement 

defparam w1.id_num = 1, w2.id_num = 2; 

//instantiate two hello_world modules 

hello_world w1(); 

hello_world w2(); 

endmodule 

 

In above example, the module hello_world was defined with a default id_num = 0. 



However, when the module instances w1 and w2 of the type hello_world are created, their id_num 

values are modified with the defparam statement. If we simulate the above design, we would get the 

following output: 

 
Displaying hello_world id number = 1 

Displaying hello_world id number = 2 

 

Multiple defparam statements can appear in a module. Any parameter can be overridden with the 

defparam statement. The defparam construct is now considered to be a bad coding style and it is 

recommended that alternative styles be used in Verilog HDL code. 
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Logic Synthesis:- 

Logic synthesis is the process of converting a high-level description of the design into an optimized 

gate-level representation, given a standard cell library and certain design constraints. A standard cell 

library can have simple cells, such as basic logic gates like and, or, and nor, or macro cells, such as 

adders, muxes, and special flipflops. A standard cell library is also known as the technology library.  

 

Flow Diagram for designer’s mind as the logic synthesis tool: 

  



 
 

Logic synthesis always existed even in the days of schematic gate-level design, but it was always done 

inside the designer's mind. The designer would first understand the architectural description. Then he 

would consider design constraints such as timing, area, testability, and power. The designer would 

partition the design into high-level blocks, draw them on a piece of paper or a computer terminal, and 

describe the functionality of the circuit. This was the high-level description. Finally, each block would 

be implemented on a hand-drawn schematic, using the cells available in the standard cell library. The 

last step was the most complex process in the design flow and required 

several time-consuming design iterations before an optimized gate-level representation that met all 

design constraints was obtained. Thus, the designer's mind was used as the 

logic synthesis tool, as illustrated in above Fig. 
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Logic synthesis tools frequently interpret the constructs and translate them to logic gates. 

 

assign statement is one those construct. 

The assign construct is the most fundamental construct used to describe combinational logic at an RTL 

level. 

If arithmetic operators are used, each arithmetic operator is implemented in terms of arithmetic 

hardware blocks available to the logic synthesis tool. A 1-bit full adder is implemented below:- 
 



assign {c_out, sum} = a + b + c_in; 

 

Assuming that the 1-bit full adder is available internally in the logic synthesis tool, the 

above assign statement is often interpreted by logic synthesis tools as follows: 

 

 
 

If a multiple-bit adder is synthesized, the synthesis tool will perform optimization and the designer 

might get a result that looks different from the above figure. 

 

If a conditional operator ? is used, a multiplexer circuit is inferred. 
 

assign out = (s) ? i1 : i0; 

 

It frequently translates to the gate-level representation as:- 

 

 
 

 


