SO CBESISGHENE

72\\ | B 18EC56

|
!

i 6)}Semester B.E. Degree Examination, Feb./Mar. 2022

// Verilog HDL
; Z Max. Marks: 100
e S 01

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1
1 a. Explain a typical design flow for designing VLSI IC circuits using the block diagram.

(10 Marks)
(05 Marks)
(05 Marks)

b. Explain the importance of HDLs.
c. Explain the trends in HDLs.

1a. A typical design flow for designing VLSI IC circuits is shown in Figure below

Design Specification

Y

Behavioral Description

5

RTL Description (HDL) |

-

Gate-Level Netlist

Physical Layout

In any design, specifications are written first. Specifications describe abstractly the functionality,
interface, and overall architecture of the digital circuit to be designed. A behavioral description is
then created to nalyse the design in terms of functionality, performance, compliance to standards,
and other high-level issues. They are written using HDLs. The behavioral description is manually
converted to an RTL description in an HDL. The designer has to describe the data flow that will
implement the desired digital circuit. Logic synthesis tools convert the RTL description to a gate-
level netlist. A gate-level netlist is a description of the circuit in terms of gates and connections
between them. The gate-level netlist is input to an Automatic Place and Route tool, which creates
a layout. The layout is verified and then fabricated on chip. Thus, most digital design activity is
concentrated on manually optimizing the RTL description of the circuit. Behavioral synthesis tools
have begun to emerge recently. These tools can create RTL descriptions from a behavioral or
algorithmic description of the circuit.

1b.

HDLs have many advantages compared to traditional schematic-based design.

+ Designs can be described at a very abstract level by use of HDLs. Designers can write
their RTL description without choosing a specific fabrication technology. Logic synthesis
tools can automatically convert the design to any fabrication technology. If a new
technology emerges, designers do not need to redesign their circuit. They simply input
the RTL description to the logic synthesis tool and create a new gate-level netlist, using
the new fabrication technology. The logic synthesis tool will optimize the circuit in area
and timing for the new technology.

« By describing designs in HDLs, functional verification of the design can be done early in
the design cycle. Since designers work at the RTL level, they can optimize and modify
the RTL description until it meets the desired functionality. Most design bugs are
eliminated at this point. This cuts down design cycle time significantly because the
probability of hitting a functional bug at a later time in the gate-level netlist or physical
layout is minimized.

+ Designing with HDLs is analogous to computer programming. A textual description with
comments is an easier way to develop and debug circuits. This also provides a concise
representation of the design, compared to gate-level schematics. Gate-level
schematics are almost incomprehensible for very complex designs.

HDL-based design is here to stay.El With rapidly increasing complexities of digital circuits
and increasingly sophisticated EDA tools, HDLs are now the dominant method for large
digital designs. No digital circuit designer can afford to ignore HDL-based design.

1c

1. Start design of digital circuits using HDL at an RTL level, because logic synthesis tools
can create gate-level netlists from RTL level des

2. Behavioral synthesis helps designers to design directly in terms of algorithms and the
behavior of the circuit, and then use CAD tools to do the translation and optimization in each

phase of the design.

3. Formal verification techniques are also appearing on the horizon. Formal verification
applies formal mathematical techniques to verify the correctness of Verilog HDL descriptions
and to establish equivalency between RTL and gate-level netlists.

4. Designers can mix gate-level description directly into the RTL description to achieve
optimum results.

5. System-level design can be a mixed bottom-up methodology where the designers use either
existing Verilog HDL modules, basic building blocks, or vendor-supplied core blocks to
quickly bring up their system simulation. This is done to reduce development costs and
compress design schedules.

OR
2 a. Explain the different levels of abstraction used for programming in verilog. (08 Marks)
b. Write the verilog code for 4-bit ripple carry counter. Also write the stimulus. (12 Marks)

2a

Behaviowaa) Jevel er ol fqu’rwnr_\Lg;?»efeJ_.f
WI/I'& bie highet Jeve ot GL’&@)_“’”
: pxovlw ‘oq \7@({0q_ K | |
ﬂi‘is P&n W\ool_,ull Cean Le, IMPMJ

Oif)ov; "L\X\/\ w /o C ontesn O‘ﬁ wa

o)
2,
\‘V\ +am_€ o—t

o3 ng\\\as\— \"0 LCd —MGV\/\.

o Dotoplow ool desiored by Apeciging

-

Y e quj[e
cl,c.,t—ov o .
it Gwstes. 4§ [ww o@ajjoxis

— @\g{m 20 4‘(1
;jww o _Reicle & Hh B Foud-

i d;,comﬁ?.

2 Gk Aewal. | :
S T wetbmadsd i Jamaq) dogie
| ey wrlessonnedton S dhe “Cates
a:‘i’m i e 02 C\osb /Qwej J-&)fcav\,
L Qi Jawel ‘ e
I SRR QM%J’

(M\W\ﬁa\ U&(vw\ /Sm0ﬂ<
\n\'e’ecoﬂ"\ecj—‘bﬂ blw H/\.a_m\

AR

o

2b

>

e

(" ;,lt Ju bk %‘PP\Q l(‘j&ﬂ‘-{ xuﬁ T @
t kﬂU’) SfVlﬂ . ~fFf oT <
) n
e R
odule Rpple —casasg (9, CIR azael)s
godmd: Laiod " W
‘V\'PUJC C\K, /\.QA-QJC'J

THF A;ffo(cvfo], cle, nesak);
daed (ovflj, oy tod, nznek);

e bppe (o (2l o, (1, MMAH{).
5 Eff3 (O\(fﬂ/ 0\,[1—], nesek);

drundde g 40 vE f

v
e

)

-

I 8 v //Wlwu. InflamLaLO/\ 'Sv dona- L\f
gﬁmu\w ,wock (Z#\.vv\ulw\ LlocJC- @

| /V\Aoc\.u.lﬂ nonALl

%Modu.\-’- QL'mulu.l ‘/
A&?f clt; /4 oaT—}uh o’b ool
' AJZA@/\‘} /‘Lz%
// OU-J’P(JJT O’B Awlg\/\ uOCJC

wie (3700 a7
//M(Lcuvlﬂa.]‘\on O'S le(gV\ 1Oloc}(_
R"'PP\‘Q’CM’QJJ /'L(q/, clk, A_L&e)c)
‘ /ot Contio) Cycle hme=

'lni"l'a) (o,

elk=t"bo; ‘ feda Cle=os

ol ‘

:Frsud‘cwamcl\c: fr Toggha el 5 Fivae unilz,
/ Lontrols Has Reseds Lignod

-y

e gin
VM:I"&Q}
Hic amek = 1'bg

160 vk = Vb4
:H_ 1) Adna ¥ — 'O

i @zig\w T womibec olP -
)m\rwl i Dl w‘: ’ O/Od’/ ')‘
loe (Q,l'wv& y g = s Yl

i 1o
end wodika

AR MW

Module-2

a. Explain the components of verilog module with block diagram. (06 Marks)
b. Explain the following data types with an example in verilog.
i) Registers i) Arrays iii) Parameters iv) Nets v) Integers. (10 Marks)

c. Explain the port connection rules in verilog. (04 Marks)
Moduke Nasve,

Rt U<, Rt Dedoxation

Roxamatex

e tion a_uowes, Dto. Xlow Joteeoetis
x9S % Stuar voxiaBes | C_OS‘;‘&B

Tndkortiotion =F touwex oSm& ardl oitial Blxeke .
el odoles AN ehoviored Sleluredts
g ese, HroKe

“loste. ord Fonctions

ordroodle 2tdterment

L=

/ A ccodle AeIiation . ‘ms&ﬂ w3ttt \@n&m@@ orodite.. e
codts. cosae , oot UK, pol dedoalion, & opinal poxametecs most
Come Xk W 0o cedits deRiatden. .

e InL omporesle oStan o cnedols oxe oo oxialds declaxohion
Potogles srotesets, Madtostiation - lawer soedelod odnosriovol
Hods' gHoake oo Jondione. - 3
es=e (ompenets on b 0 C»&O(du &&Q‘&W o g
@ oodote depeation . e ‘erdsmduts - ctalevedts tauak o\\m& Cove
st 10 o modote degcbion -

2. Oplaio e diggecedt fyps & pod> Suppedted by Vodleg HOL woity

exnrantse

3bExplain the following data types with an example in verilog:

(1) Nets: Nets represent connections between hardware elements. Just as in real circuits, nets
have values continuously driven on them by the outputs of devices that they are connected to.
Nets are declared primarily with the keyword wire.

Example:

wire a; //Declare net a for the above circuit

wire b,c; //Declare two wires b,c for the above circuit

wire d = I’b0; //Net d is fixed to logic value 0 at declaration.

(i) Register: Registers represent data storage elements. Registers retain value until another
value is placed onto them. Unlike a net, a register does not need a driver. Verilog registers do
not need a clock as hardware

registers do. Values of registers can be changed anytime in a simulation by assigning a new
value to the register. Register data types are commonly declared by the keyword reg. The
default value for a reg data type is ‘x’.

Example:

reg reset; //declare a variable reset that can hold its value

initial //this construct will be discussed later

begin

reset = I’b1; //initialize reset to 1 to reset the digital circuit.

#100 reset = I’b0; //after 100 time units reset is deasserted.

End

(iii) Integers:

An integer is a general purpose register data type used for manipulating quantities. Integers
are declared by the keyword integer. The default width for an integer is the host-machine
word size, which is implementation specific but is at least 32-bits. Registers declared as data
type ‘reg’ store values as unsigned quantities, whereas integers store values as signed

quantities.

Example:

integer counter; //general purpose variable used as a counter.
Initial

counter = -1;

A port consisting of two units, one unit that is internal to the module another that is
external to the module. The internal and external units are connected.

net 3
net #inoul

input output
___.._'.
reg or net net reg or net net

Internally, input ports must always be of the type net. Externally, the inputs can be
connected to a variable which 1s a reg or a net.

02 marks
Internally, outputs ports can be of the type reg or net. Externally, outputs must always
be connected to a net. They cannot be connected to a reg.

02 marks
Internally, inout ports must always be of the type net. Externally, inout ports must
always be connected to a net.

02 marks
It 1s legal to connect internal and external items of different sizes when making inter-
module port connections. However, a warning is typically issued that the widths do not
match.
Verilog allows ports to remain unconnected.

OR
4 a. Write the verliog description of SR latch. Also write stimulus code. (10 Marks)
b. Explain $display, $monitor, $finish and Sstop system tasks with examples. (10 Marks)

RN
T £ |T R| 8 0
= e
Lolo 1]t »
3 1P [‘|t004/1ww'd-ﬁa&

wodids - o 24— e (g, Bpan) duus, Boar))

"W '5‘0“&) wav)
bl G, Guan)
wi (8, Svar Q,bwv))
Paasl M"(Bras, Ebm) 9))
wd vwodudl |

A wiz 9 [PEST] FECT R

b 3 (TEPRR WO T YL Y S B o S | e ld—

7www wd pBE Wik
module s, Qbosy, Shos Rbest) |

&t dedasabiay,
o @ Qas;
W Skay KLW.)

I/ wnskoutatz wiley bimitic vl gt

hand wi (@, Shas, Qbas);
word b2 ((Bbos, Rbas, @),

ondmodule
V/ sindus

widule

wodule ’»f'm-ex)

o

W 3

Ukl
e
+ 10
H 10

SW,%&S}/‘

QLwI,Q}

/| wstadats
st st Qg Shor Rboy)
| 7 vbavisal ok) tnital

J

[dedisatmr 4 ok S wireg

sbag = 1'61) Rhas= J'b 1

Skas = 1'b1

Lbas =)'bo;

4b

12)3

410 Bz = 4'/,0) Klaw}:i’bl)
ey . = G

evd {f fud,
bwanith (Yoo, infut Sbor=1b) Ror = 1.4 g

(92‘1"’) QQ&S:/'L’)SLCJ)KW/CQ7(QW)}'

1 eduadule Satmadt
andmadde

BeAY
g\i?/:l,,j p40u1chu _c‘LL,\C)MJ /QNLM" v"l""’)‘”
éo—i Ge,z,l—cun Ro\;li;\.a) :’ﬁww‘ H
- el /(gl&bm /b'_oq\u Op Pt PC_Z

D‘F[a{ infonetios
@ls ol ocuin /SbYl/th\/l J@/J(, ﬁpe{ CJLC’

e /gL(-\.V\)llQ R CKPAM'W\A

melt ?\MC Pie Pa, Ps . m
pro Par ba procen e gt M

Val'ono\vi ot e}c(ma/v&\mu
tx: > éﬂ eltsplaq(I L_Lc,llu@ Oqcﬁld 1.
~ gl' A‘SP\"“‘I (il -\—\ww_x;

-y -
‘? ’fe%[q Oﬁ_(Pa\)r—rcl
Bduples (* o g P a7y pre—— 1)
- Io of Pk 1o oo:ol

ol ™ infooliot | | e
9_’/1)’”\4 ’f”;-mecl\&muvm }'b V\onu.J'L'K« (*y{"‘”-‘“

= \/e,u 07 Pxov

o ol vodue changes. @

]Eﬁ"m(?n?»/——-pn)j | .
Nore: ' vnondpe! niedi 1o Le _muach‘ L_Mj? iy

g

T:Jorﬂl'a)bl):Oqu'LfJn N\B'V‘-J’v{ OV\ Laﬁh'

| Imihac
r beg
\‘QMOM(&LM ,
G[‘ JC :_"/o NWJ/-':_ ‘/tol‘, 'CloJL,K_O/J—QJ';J'

" Vol ﬂr Ql((/"\OJ_(

D,Pj Lo \;M of- Kémcjo CLOQJL-—U""VLQL .
[/ 20 \/CAM“ q’f’) ‘“) \M:/

l ; ! O v1- — |
| | Lo "(
*ii _ |

—
—

(1

i 10TE62‘ 10TE63 10TE64 —\ / \ _—
QLU?J"“C[3{ Q’mslmw.a' M a /g.wwia\.)ﬂaw

The lo/s‘L ifi—op 1 C PAO\IICLQ__J t'o /g./’w "‘L\Q,
L ®
EHS"D{J | ’
- e é\g‘mp p»Ja HM /z.wuﬂon -
T e
e desgwes can Atan éﬂ.ﬁcg:ﬂ
‘ _ﬂ//,%a:o#/ ’Hf' ,Leicf Ly

ermnckn e Aol ohon
/gXW\IL DMLA—DP*& ‘??ML-SL) A&Lon { e xoniu—es

)’Ps 0.17 to© M,HKQ BN
Mg ok V4)6’”‘5\"“ Fhe /@\mulajbxom k}:rm
witna)
C\oo\C 2= 0y
e =1
=H:(d\7 @xé’* ﬁ’S\’U—P //q'us w‘ll _/KM
Yo D £ e /EWJ&}W J

“/*’D“Hma,(m

\}' e,u,t,ou,m'f\:uz! Hee ‘4Mac,u9,.mam/t&>_
5 M ls'z\wicu IFD H AL%JJASL ua C .

%ﬁ,__ | //M\,uie/u@» wosd g1ye U ?;??:%Tﬂd
' — ' W wew\,su(}z A2 F E f'
| ‘el e emcou.ulfﬂlﬁx QIFUP

// W r \ . /S &,&A—w
| ¢ o\e,kw\ﬂ- S Blop |
. M eHdl IS MCO%MIA/Z_O{ | IC. RS
m‘”l“‘ ! 0\%\%"— el ;g.)‘ , /gﬂ&s%’ﬁw
e | |
B didee Vaidg g

WH'—\LQ- V“LeLon f'tl- Uwﬁ

\ \MC\LLO‘&. » |

5a

5a

Module-3
What are rise, fall and turn off delays? How they are specified in verilog? (06 Marks)

What would be the output of the following for A = 4'b0111 an dB = 4'b1001.

i) &Bii) A<<<2 iii) {A, B} iv) {2{B}} v) A"B vi) A|[B vii) A*B viii) A<=DB. (08 Marks)

Mention the symbol, truth table and an example for BUFIF1 and BUFIF0 primitive gates.
(06 Marks)

Rise delay:
The rise delay is associated with a gate output transition to a 1 from another value.

| 1

0, =0Ore
t rise
01 marks
Fall delay
The fall delay is associated with a gate output transition to a 0 from another value.
1, xore |
o
t_fall
01 marks

Turn-off delay

The turn-off delay is associated with a gate output transition to the high impedance value (z)

from another value. If the value changes to x, the minimum of the three delays is considered.
01 marks

Three types of delay specifications are allowed.

If only one delay is specified, this value is used for all transitions.

J/ Delay of delay_time for all transitions

and #(delay_time) allout, il, i2);

and #(5) al{out, 1l, 12);

5b

b

vii)

If rtwo delays are specified, they refer to the rise and fall delay values. The turn-off delay 1s
the minimum of the two delays.

// Rise and Fall Delay Specification.

and #(rise_wval, fall_wal) aZ{out, 11, i2};
and #(4,6) a2(out, 1l, 12);
If all three delays are specified, they refer to rise, fall, and turn-off delay values. If no delays
are specified, the default value 1s zero.

// Rise, Fall, and Turn-off Delay Specificaticon
bufif0 #{(rise_wal, fall_wal, turnoff_wal) bl (out, in, control);

Bufif0 # (3,4,5) bl (out, in, control) ;

What would be the output of the following for A = 4'b0111 an dB = 4'b1001.
i) &B ii) A<<<2 i) {A, B} iv) {2{B}} v) A"B vi) A[[B vii) A*B viii) A<=B. (08 Marks)

0&18&1&1=0
1100
10011001
1110

1111
111111=63d
1

5c

\Dx_k% O

ve 321 S
l PN o
Slaxe (notentka don

‘ o ‘O\Leub\lkﬁ\ > WO\ O (e tan @
’ i
i oLy vl ours i o,

D QQ—‘\\‘“ e 5 [o Lo ra @

' Teaea Yo\l e

',—\DLQ‘ \“\"\ bl k\c\—‘ N oul

(o O - \

‘ 1 \) o
TRl VIR

BPutie| mont: Gaxes vtk an eddarea el

‘ LU LD cesn @O |
{ | | 7 § ‘ ;

| e R rowt@&\ | | a

| W\ oo Saly 1 e Lot o)

e pore=
T~ e
o\ erauren Y

Uy assarked - The, PRI

ac
P Le deaaserveal .

7 AR, KGR aset

- ouk

N
Du ™ &\

QA p

TROTR S ®UE

bwteo| o | l -
L = L ——~"“-%
b\;&\Qﬁ_ ~ 9— PRy Fee o N o O '@_,1 ,,_..*L— T
O . 28 (W) | o ',
T e s e i i TG \ v\ — | W ‘ I
LI -4 LR T N e "
BdZ | wpge |JE 0T e A o LT s T
2 2% | x 2 | ® |2 k <
| e
6 "~ Design AOI basedm4 to 1 multlplexer andv write the verilog description and its stimulus.
(10 Marks)

b. Write the venlog data flow descnptlon for 4-bit full adder with carry look —ahead logic.

Ans. 6a.
r————"""""""""~"~""/~-7/"7/7///m===== H
i0 : ™, y0 |
| — |
i — [y i
| B |
- = -
2 — 2 :
| — |
i3 E N y3 |
| -/ |
: sin sOn 1
|
13]4 =
51— i
s0 —4 I
L J
Verilog Code:-

module mux4_to_1 (out, i0, i1, i2, i3, s1, s0);
// Port declarations from the 1/O diagram

output out;
input i0, i1, i2, i3;

(10 Marks)

input s1, sO;

/I Internal wire declarations
wire s1n, sOn;

wire y0, y1,y2,y3;

/I Gate instantiations

/l Create s1n and sOn signals.
not (s1n, sl);

not (sOn, s0);

/l 3-input and gates instantiated
and (y0, i0, s1n, sOn);

and (y1, i1, sin, s0);

and (y2, i2, s1, sOn);

and (y3, i3, s1, s0);

Il 4-input or gate instantiated
or (out, y0, y1, y2, y3);
endmodule

Stimulus:-

module stimulus;

I/ Declare variables to be connected

/I to inputs

reg INO, IN1, IN2, IN3;

84

reg S1, SO;

/I Declare output wire

wire OUTPUT;

/I Instantiate the multiplexer

mux4_to_1 mymux(OUTPUT, INO, IN1, IN2, IN3, S1, S0);

/[Stimulate the inputs

/I Define the stimulus module (no ports)

initial

begin

/I set input lines

INO=1;IN1=0;IN2=1;IN3=0;

#1 $display("INO= %b, IN1= %b, IN2= %b, IN3= %b\n",INO,IN1,IN2,IN3);
Il choose INO

S1=0;S0=0;

#1 $display("S1 = %b, SO = %b, OUTPUT = %b \n", S1, SO, OUTPUT);
/l choose IN1

S1=0;S0=1;

#1 $display("S1 = %b, SO = %b, OUTPUT = %b \n", S1, SO, OUTPUT);
Il choose IN2

S1=1;S0=0;

#1 $display("S1 = %b, SO = %b, OUTPUT = %b \n", S1, SO, OUTPUT);

/I choose IN3

S1=1;S0=1;

#1 $display("S1 = %b, SO = %b, OUTPUT = %b \n", S1, SO, OUTPUT);
end

endmodule

Output:-

The output of the simulation is shown below. Each combination of the select signals is
tested.

INO=1, IN1=0, IN2=1, IN3=0

S1=0,S0=0,0UTPUT =1

S1=0,S0=1,OUTPUT =0

S1=1,S0=0,0UTPUT =1

S1=1,S0=1,0UTPUT =0

Ans.6b

Gate-level diagram has to be made first and then code has to be written as:-

module fulladd4 (sum, c out, a, b, c in);
// Inputs and outputs

output [3:0] sum;

output c out;

input [3:0] a,b;

input c_in;

// Internal wires

wire p0,g0, pl,9l, p2,92, p3,93;
wire c4, c3, c2, cl;

// compute the p for each stage
assign p0 = a[0] ~ b[O0],

pl all] ~ b[1l],

p2 = al2] ~ bl2],

p3 al3] ~ bl[3];

// compute the g for each stage

assign g0 = al[0] & b[0],

gl = all] & b[l],

af2] & b[2],

g3 = al3] & b[3];

// compute the carry for each stage

// Note that c_in is equivalent cO in the arithmetic equation for
// carry lookahead computation

Q
N
Il

assign cl = g0 | (p0 & c_in),

c2 =gl | (pl & g0) | (pl & PO & c_in),

c3 =92 | (p2 & gl) | (p2 & pl & g0) | (p2 & pl & p0O & c_in),
cd =93 | (P3 & g2) | (P3 & p2 & gl) | (pP3 & p2 & pl & g0) |

(p3 & p2 & pl & pO0 & c_in);
// Compute Sum
assign sum[0] = p0O ~ c_in,

sum[1l] = pl *~ cl1,
sum[2] = p2 * c2,
sum([3] = p3 * c3;
// Assign carry output

assign c_out = c4;
endmodule
Module-4
7 a. Explain blocking and non-blocking assignments with an example. (10 Marks)
b. Write a verilog code for clock generation with a period of 20 units using forever loop.
(05 Marks)
C. Write the differencesbetween the tasks and functions. (05 Marks)
Ans. 7a.

Blocking assignment

Blocking assignment statements are executed in the order they are specified in a sequential block. A
blocking assignment will not block execution of statements that follow in a parallel block. The =
operator is used to specify blocking assignments.

Example:- Blocking Statements

reg X, yr 2;

reg [15:0] reg a, reg b;

integer count;

//All behavioral statements must be inside an initial or always block

initial

begin

x =0; y=1; z = 1; //Scalar assignments

count = 0; //Assignment to integer variables

reg a = 16'b0; reg b = reg a; //initialize vectors

#15 reg a[2] = 1'bl; //Bit select assignment with delay

#10 reg b[15:13] = {x, y, z} //Assign result of concatenation
to

// part select of a vector

count = count + 1; //Assignment to an integer (increment)

end

The statement y = 1 is executed only after x = 0 is executed. The behavior in a particular block is
sequential in a begin-end block if blocking statements are used, because the statements can execute
only in sequence. The statement count = count+ 1 is executed last. The simulation times at which the
statements are executed are as follows:

« All statements x = 0 through reg_b = reg_a are executed at time 0

e Statement reg_a[2] = 0 at time = 15

e Statement reg_b[15:13] = {X, y, z} at time = 25

e Statement count = count + 1 at time = 25

» Since there is a delay of 15 and 10 in the preceding statements, count = count + 1 will be executed at
time = 25 units

Nonblocking Assignments

Nonblocking assignments allow scheduling of assignments without blocking execution of the
statements that follow in a sequential block. A <= operator is used to specify nonblocking assignments.
This operator has the same symbol as a relational operator, less_than_equal_to. The operator <= is
interpreted as a relational operator in an expression and as an assignment operator in the context of a
nonblocking assignment. To illustrate the behavior of nonblocking statements and its difference from
blocking statements, let us consider example where we convert some blocking assignments to
nonblocking assignments, and observe the behavior.

Example Nonblocking Assignments

reqg x, vV, Z;

reg [15:0] reg a, reg b;

integer count;

//A11l behavioral statements must be inside an initial or always block
initial

begin

x =0; y=1; z =1; //Scalar assignments

count = 0; //Assignment to integer variables

reg a = 16'b0; reg b = reg a; //Initialize vectors

reg a[2] <= #15 1'bl; //Bit select assignment with delay

reg b[15:13] <= #10 {x, y, z}; //Assign result of concatenation
//to part select of a vector

count <= count + 1; //Assignment to an integer (increment)

end

In this example, the statements x = 0 through reg_b = reg_a are executed sequentially at time 0. Then
the three nonblocking assignments are processed at the same simulation time.

1. reg_a[2] = 0 is scheduled to execute after 15 units (i.e., time = 15)

2. reg_b[15:13] = {Xx, y, z} is scheduled to execute after 10 time units (i.e.,

time = 10)

3. count = count + 1 is scheduled to be executed without any delay (i.e., time = 0)

Thus, the simulator schedules a nonblocking assignment statement to execute and continues to the next
statement in the block without waiting for the nonblocking statement to complete execution. Typically,
nonblocking assignment statements are executed last in the time step in which they are scheduled, that
is, after all the blocking assignments in that time step are executed.

Ans. 7b.

Code for Clock generation

module gen_clk(clock);

reg clock;

initial

begin

clock = 1'b0;

forever #10 clock = ~clock; //Clock with period of 20 units
end

endmodule

Ans. 7c

Tasks and functions serve different purposes in Verilog.

Functions

Tasks

A function can enable another function
but not another task.

A task can enable other tasks and functions.

Functions always execute in 0
simulation time.

Tasks may execute in non-zero simulation
time.

Functions must not contain any delay.
event, or timing control statements.

Tasks may contain delay. event. or timing
control statements.

Functions must have at least one input
argument. They can have more than one
mput.

Tasks may have zero or more arguments of
type input. output. or inout.

unctions always return a single value.
They cannot have output or inout
arguments.

Tasks do not return with a value. but can
pass multiple values through output and
inout arguments.

8 a. Discuss sequential and parallel blocks with examples. (10 Marks)
b. Write a verilog program for 8 : 1 multiplexer using case statement. (10 Marks)
Ans.8a

Block statements are used to group multiple statements to act together as one.
There are two types of blocks: sequential blocks and parallel blocks.

Sequential blocks

The keywords begin and end are used to group statements into sequential blocks. Sequential blocks

have the following characteristics:

» The statements in a sequential block are processed in the order they are specified. A statement is
executed only after its preceding statement completes execution (except for nonblocking assignments

with intra-assignment timing control).

« |f delay or event control is specified, it is relative to the simulation time when the previous statement

in the block completed execution.

Statements in the sequential block execute in order. In Illustration 1, the final valuesare x=0,y=1, z
=1, w=2atsimulation time 0. In Hlustration 2, the final values are the same except that the simulation

time is 35 at the end of the block.

Example Sequential Blocks

//Illustration 1: Sequential block without delay

reg X, vy

reg [1:0] z, w;
initial

begin

x = 1'b0;

y = 1'bl;

z = {x, y};

w = {y, x};

152

end

//Illustration 2: Sequential blocks with delay.
reg X, Vy;

reg [1:0] z, w;

initial

begin

x = 1'b0; //completes at simulation time 0

#5 y = 1'bl; //completes at simulation time 5

#10 z = {x, y}; //completes at simulation time 15
#20 w = {y, x}; //completes at simulation time 35
end

Parallel blocks

Parallel blocks, specified by keywords fork and join, provide interesting simulation features.
Parallel blocks have the following characteristics:

» Statements in a parallel block are executed concurrently.

» Ordering of statements is controlled by the delay or event control assigned to each statement.
« If delay or event control is specified, it is relative to the time the block was entered.

All statements in a parallel block start at the time when the block was entered. Thus, the order in
which the statements are written in the block is not important.

Example Parallel Blocks
//Example 1: Parallel blocks with delay.

reg x, ys

reg [1:0] z, w;

initial

fork

x = 1'b0; //completes at simulation time 0

#5 y = 1'bl; //completes at simulation time 5

#10 z = {x, y}; //completes at simulation time 10
#20 w = {y, x}; //completes at simulation time 20
join

The result of simulation remains the same except that all statements start in parallel at time 0. Hence,
the block finishes at time 20 instead of time 35.

Parallel blocks provide a mechanism to execute statements in parallel. However, it is important to be
careful with parallel blocks because of implicit race conditions that might arise if two statements that
affect the same variable complete at the same time.

Ans. 8b

10—
. sl 50 out
= o]
9 : Mux — Ot 0 0 10
0 1 I
13—
1 0 2
T ¢ 1 1 I3
sl s

4-to-1 Multiplexer with Case Statement

module mux4 to 1 (out, i0, i1, 12, i3, sl, s0);
// Port declarations from the I/0 diagram
output out;

input i0, i1, 12, 1i3;

input sl1l, sO0;

reg out;

always @(sl or sO or 10 or il or i2 or 1i3)

case ({sl, s0}) //Switch based on concatenation of control signals
2'd0 : out = i0;

2'dl : out = il;

2'd2 : out = 12;

2'd3 : out = 13;

default: $display("Invalid control signals");
endcase

endmodule

Module-5
9 a. Write the verilog description for D — flipflop using assign and deassign procedural
continuous assignments. (10 Marks)
b. Explain defparam statement with an example. - (10 Marks)

Ans.9a

The keywords assign and deassign are used to express the first type of procedural continuous
assignment. The left-hand side of procedural continuous assignments can be only be a register or a
concatenation of registers. It cannot be a part or bit select of a net or an array of registers. Procedural
continuous assignments override the effect of regular procedural assignments. Procedural continuous
assignments are normally used for controlled periods of time.

D-Flipflop with Procedural Continuous Assignments

module edge dff(q, gbar, d, clk, reset);

output g, gbar;

input d, clk, reset;

reg q, gbar; //declare g and gbar are registers

always @ (negedge clk) //assign value of g & gbar at active edge of clock.
begin

qg = d;

gbar = ~d;

end

always @ (reset) //Override the regular assignments to g and gbar
//whenever reset goes high. Use of procedural continuous assignments.
if (reset)

begin

assign g = 1'b0;

assign gbar = 1'bl;

end

else

begin //If reset goes low, remove the overriding values by deassigning the
//registers. After this the regular assignments g = d and gbar = ~d will be able

//to change the registers on the next negative edge of clock.
deassign qg;

deassign gbar;

end

endmodule

In above code, we overrode the assignment on g and gbar and assigned new values to them when the
reset signal went high. The register variables retain the continuously assigned value after the deassign
until they are changed by a future procedural assignment. The assign and deassign constructs are now
considered to be a bad coding style and it is recommended that alternative styles be used in Verilog
HDL code.

Ans. 9b

Parameters can be defined in a module definition However, during compilation of Verilog modules,
parameter values can be altered separately for each module instance. This allows us to pass a distinct
set of parameter values to each module during compilation regardless of predefined parameter values.
There are two ways to override parameter values: through the defparam statement or through module
instance parameter value assignment.

defparam Statement
Parameter values can be changed in any module instance in the design with the keyword defparam.
The hierarchical name of the module instance can be used to override parameter values.

Example Defparam Statement

//Define a module hello world

module hello world;

parameter id num = 0; //define a module identification number = 0
initial //display the module identification number
Sdisplay("Displaying hello world id number = %d", id num);
endmodule

//define top-level module

module top;

//change parameter values in the instantiated modules
//Use defparam statement

defparam wl.id num = 1, w2.id num = 2;

//instantiate two hello world modules

hello world wl();

hello world w2();

endmodule

In above example, the module hello_world was defined with a default id_num = 0.

However, when the module instances w1l and w2 of the type hello_world are created, their id_num
values are modified with the defparam statement. If we simulate the above design, we would get the
following output:

Displaying hello world id number

1
Displaying hello world id number 2

Multiple defparam statements can appear in a module. Any parameter can be overridden with the
defparam statement. The defparam construct is now considered to be a bad coding style and it is
recommended that alternative styles be used in Verilog HDL code.

10 a. What is logic synthesis? Explain-the flow diagram for the designer’s mind as the logic
synthesis tool. ' (10 Marks)
b. What will be the following statements translate to when run on.a logic synthesis tool :

Assign {C-out,sum } =a+b+Cin;
Assign out =(s) 711 :10; (10 Marks)

Ans. 10a

Logic Synthesis:-

Logic synthesis is the process of converting a high-level description of the design into an optimized
gate-level representation, given a standard cell library and certain design constraints. A standard cell
library can have simple cells, such as basic logic gates like and, or, and nor, or macro cells, such as
adders, muxes, and special flipflops. A standard cell library is also known as the technology library.

Flow Diagram for designer’s mind as the logic synthesis tool:

Architectural
Description

Y

I’artitirminﬁ into
|

High-Level Blocks
r—— === _*_ - - - = De:;ign Constraints
| . . . |
| — | Designer’s Mind |
| B I Standard Cell
| _g | Library
= Gate-Level)
e
| 3 . | (technology
| g Representation | dependent)
20
| & |
|~ ~ I
| -._,H__hl_:‘_]‘i-;’ﬁlgl"t Constraints_- |

-‘-\-"1._‘_ -

e
g PR — —_— e = == =
ﬁ’ﬂ'ﬁ

Optimized Gate-
Level Representation

Logic synthesis always existed even in the days of schematic gate-level design, but it was always done
inside the designer's mind. The designer would first understand the architectural description. Then he
would consider design constraints such as timing, area, testability, and power. The designer would
partition the design into high-level blocks, draw them on a piece of paper or a computer terminal, and
describe the functionality of the circuit. This was the high-level description. Finally, each block would
be implemented on a hand-drawn schematic, using the cells available in the standard cell library. The
last step was the most complex process in the design flow and required

several time-consuming design iterations before an optimized gate-level representation that met all
design constraints was obtained. Thus, the designer's mind was used as the

logic synthesis tool, as illustrated in above Fig.

Ans. 10b
Logic synthesis tools frequently interpret the constructs and translate them to logic gates.

assign statement is one those construct.

The assign construct is the most fundamental construct used to describe combinational logic at an RTL
level.

If arithmetic operators are used, each arithmetic operator is implemented in terms of arithmetic
hardware blocks available to the logic synthesis tool. A 1-bit full adder is implemented below:-

assign {c_out, sum} = a + b + c_in;

Assuming that the 1-bit full adder is available internally in the logic synthesis tool, the
above assign statement is often interpreted by logic synthesis tools as follows:

E ﬁl _H\l, sum

c_out

c_in

If a multiple-bit adder is synthesized, the synthesis tool will perform optimization and the designer
might get a result that looks different from the above figure.

If a conditional operator ? is used, a multiplexer circuit is inferred.

assign out = (s) ? il : 1i0;

It frequently translates to the gate-level representation as:-

out

