




 

1 
 

Module 1 
1 a SYMMETRIC CIPHER MODEL  

A symmetric encryption scheme has five ingredients. 
• Plaintext: This is the original intelligible message or data that is fed into the algorithm as input. 

 
• Encryption algorithm: The encryption algorithm performs various substitutions and transformations 

on the plaintext.  

• Secret key: The secret key is also input to the encryption algorithm. The key is a value independent of 

the plaintext and of the algorithm. The algorithm will produce a different output depending on the 

specific key being used at the time. The exact substitutions and transformations performed by the 

algorithm depend on the key.  

• Ciphertext: This is the scrambled message produced as output. It depends on the plaintext and the 

secret key. For a given message, two different keys will produce two different ciphertexts. The 

ciphertext is an apparently random stream of data and, as it stands, is unintelligible.  

• Decryption algorithm: This is essentially the encryption algorithm run in reverse. It takes the 

ciphertext and the secret key and produces the original plaintext. 

There are two requirements for secure use of conventional encryption: 
1. We need a strong encryption algorithm. At a minimum, we would like the algorithm to be such that an 

opponent who knows the algorithm and has access to one or more ciphertexts would be unable to 

decipher the ciphertext or figure out the key. This requirement is usually stated in a stronger form: The 

opponent should be unable to decrypt ciphertext or discover the key even if he or she is in possession 

of a number of ciphertexts together with the plaintext that produced each ciphertext. 

2. Sender and receiver must have obtained copies of the secret key in a secure fashion and must keep the 

key secure. If someone can discover the key and knows the algorithm, all communication using this key 

is readable. 
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We assume that it is impractical to decrypt a message on the basis of the ciphertext plus knowledge of the 
encryption/decryption algorithm. In other words, we do not need to keep the algorithm secret; we need to keep 
only the key secret. This feature of symmetric encryption is what makes it feasible for widespread use. The fact 
that the algorithm need not be kept secret means that manufacturers can and have developed low-cost chip 
implementations of data encryption algorithms. These chips are widely available and incorporated into a 
number of products. With the use of symmetric encryption, the principal security problem is maintaining the 
secrecy of the key. 

Let us take a closer look at the essential elements of a symmetric encryption scheme. A source produces 
a message in plaintext, 𝑋 = [𝑋1, 𝑋2, … . 𝑋𝑀]. The M elements of X are letters in some finite alphabet. Traditionally, 
the alphabet usually consisted of the 26 capital letters. Nowadays, the binary alphabet {0, 1} is typically used. 

For encryption, a key of the form 𝐾 = [𝐾1, 𝐾2, … . . 𝐾𝐽]is generated. If the key is generated at the message source, 

then it must also be provided to the destination by means of some secure channel. Alternatively, a third party 
could generate the key and securely deliver it to both source and destination. 

With the message X and the encryption key K as input, the encryption algorithm forms the ciphertext 
𝑌 = [𝑌1, 𝑌2, … . 𝑌𝑀]. We can write this as 𝑌 = 𝐸(𝐾, 𝑋)  

This notation indicates that Y is produced by using encryption algorithm E as a function of the plaintext 
X, with the specific function determined by the value of the key K. The intended receiver, in possession of the 
key, is able to invert the transformation: 𝑋 = 𝐷(𝐾, 𝑌)   

An opponent, observing Y but not having access to K or X, may attempt to recover X or K or both X and 
K. It is assumed that the opponent knows the encryption (E) and decryption (D) algorithms. If the opponent is 
interested in only this particular message, then the focus of the effort is to recover X by generating a plaintext 
estimate 𝑋̂. Often, however, the opponent is interested in being able to read future messages as well, in which 
case an attempt is made to recover K by generating an estimate 𝐾. 

1 b Plain text: PAY MORE MONEY 

Key: [   
17 17 5
21 18 21
2 2 19

  ] 

Step1:  Divide the plain text into block of 3(as here key is a 3X3 matrix) 
PAY   MOR   EMO NEY 

 
P A Y 
15 0 24 

. 

 
M O R 
12 14 17 

 

 
E M O 
4 12 14 

 

 
N E Y 
13 4 24 

 

If it is not possible to make a group then add some filler letters ‘X’ to complete the group. 
Step-2:  
𝐶 = 𝐾𝑃 𝑚𝑜𝑑 26 

[ 

𝐶11 𝐶12 𝐶13
𝐶21 𝐶22 𝐶23
𝐶31 𝐶32 𝐶33

  

𝐶14
𝐶24
𝐶34

] =  [ 

𝐾11 𝐾12 𝐾13
𝐾21 𝐾22 𝐾23
𝐾31 𝐾32 𝐾33

 ] × [ 

𝑃11 𝑃12 𝑃13
𝑃21 𝑃22 𝑃23
𝑃31 𝑃32 𝑃33

   

𝑃14
𝑃24
𝑃34

]  𝑚𝑜𝑑 26 

 

[

𝐶11 𝐶12 𝐶13
𝐶21 𝐶22 𝐶23
𝐶31 𝐶32 𝐶33

  

𝐶14
𝐶24
𝐶34

] =  [   
17 17 5
21 18 21
2 2 19

  ] × [
15 12 4
0 14 12
24 17 14

     
13
4
24
]  𝑚𝑜𝑑26 

 

[

𝐶11 𝐶12 𝐶13
𝐶21 𝐶22 𝐶23
𝐶31 𝐶32 𝐶33

  

𝐶14
𝐶24
𝐶34

] =  [  
375 527 342
819 861 594
486 375 298

   
409
849
490

  ]𝑚𝑜𝑑 26 =  [ 
11 7 4
13 3 22
18 11 12

    
19
17
22
  ] 

 

[

𝐶11 𝐶12 𝐶13
𝐶21 𝐶22 𝐶23
𝐶31 𝐶32 𝐶33

  

𝐶14
𝐶24
𝐶34

] = 𝐶 = [  
𝐿 𝐻 𝐸
𝑁 𝐷 𝑊
𝑆 𝐿 𝑀

   
𝑇
𝑅
𝑊
 ] 

 
Plain Text: PAY MORE MONEY 
Cipher Text: LNS HDLE WMTRW 
 

2 a Pseudo Code of the Euclidean Algorithm: 
Step 1:  Let a, b be the two numbers 
Step 2:  a mod b = R 
Step 3:  Let a = b and b = R 
Step 4:  Repeat Steps 2 and 3 until a mod b is greater than 0 
Step 5:  GCD = b 
Step 6: Finish  
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𝒒 𝒓𝟏 𝒓𝟐 𝒓 
1 24140 16762 7378 
2 16762 7378 2006 
3 7378 2006 1360 
1 2006 1360 646 
2 1360 646 68 
9 646 68 34 
2 68 34 0 
 34 0  

 

2 b Property Expression 
Commutative Laws (𝑎 + 𝑏)𝑚𝑜𝑑 𝑛 = (𝑏 + 𝑎) 𝑚𝑜𝑑 𝑛 

(𝑎 × 𝑏)𝑚𝑜𝑑 𝑛 = (𝑏 × 𝑎) 𝑚𝑜𝑑 𝑛 
Associative Laws [(𝑎 + 𝑏) + 𝑐]𝑚𝑜𝑑 𝑛 = [𝑎 + (𝑏 + 𝑐)]𝑚𝑜𝑑 𝑛 

[(𝑎 × 𝑏) × 𝑐]𝑚𝑜𝑑 𝑛 = [𝑎 × (𝑏 × 𝑐)]𝑚𝑜𝑑 𝑛 
Distributive Law [𝑎 × (𝑏 + 𝑐)]𝑚𝑜𝑑 𝑛 = [(𝑎 × 𝑏) + (𝑎 × 𝑐)]𝑚𝑜𝑑 𝑛 

[𝑎 + (𝑏 × 𝑐)]𝑚𝑜𝑑 𝑛 = [(𝑎 + 𝑏) × (𝑎 + 𝑐)]𝑚𝑜𝑑 𝑛 
Identities  (0 + 𝑎)𝑚𝑜𝑑 𝑛 = 𝑎 𝑚𝑜𝑑 𝑛 

(1 × 𝑎)𝑚𝑜𝑑 𝑛 = 𝑎 𝑚𝑜𝑑 𝑛 
Inverse 𝑎 + 𝑘 = 0 𝑚𝑜𝑑 𝑛    𝑤ℎ𝑒𝑟𝑒 𝑘 = (−𝑎) 

𝑎 × 𝑘 = 1 𝑚𝑜𝑑 𝑛    𝑤ℎ𝑒𝑟𝑒 𝑘 =  𝑎−1 
Let a = 1, b = 5, c = 3 and n = 8 
Commutative Laws: 

1. (𝑎 + 𝑏)𝑚𝑜𝑑 𝑛 = (1 + 5)𝑚𝑜𝑑 8 = 6    (𝐿𝐻𝑆) 
(𝑏 + 𝑎) 𝑚𝑜𝑑 𝑛 = (5 + 1)𝑚𝑜𝑑 8 = 6    (𝑅𝐻𝑆)   

LHS = RHS (proved) 

2. (𝑎 × 𝑏)𝑚𝑜𝑑 𝑛 = (1 × 5)𝑚𝑜𝑑 8 = 5     (𝐿𝐻𝑆) 
(𝑏 × 𝑎) 𝑚𝑜𝑑 𝑛 = (5 × 1)𝑚𝑜𝑑 8 = 5    (𝑅𝐻𝑆) 

LHS = RHS (proved) 

Associative Laws: 
1. [(𝑎 + 𝑏) + 𝑐]𝑚𝑜𝑑 𝑛 = [(1 + 5) + 3]𝑚𝑜𝑑 8 = [6 𝑚𝑜𝑑 8 + 3 𝑚𝑜𝑑 8]𝑚𝑜𝑑 8 = 

[9]𝑚𝑜𝑑 8 = 1   (𝐿𝐻𝑆) 

[𝑎 + (𝑏 + 𝑐)]𝑚𝑜𝑑 𝑛 =  [1 + (5 + 3)]𝑚𝑜𝑑 8 = [1 𝑚𝑜𝑑 8 + 0 𝑚𝑜𝑑 8]𝑚𝑜𝑑 8 = 

[1]𝑚𝑜𝑑 8 = 1     (𝑅𝐻𝑆) 

LHS = RHS (proved) 

2. [(𝑎 × 𝑏) × 𝑐]𝑚𝑜𝑑 𝑛 = [(1 × 5) × 3]𝑚𝑜𝑑 8 = [5 𝑚𝑜𝑑 8 × 3 𝑚𝑜𝑑 8 ]𝑚𝑜𝑑 8 = 
[15 ]𝑚𝑜𝑑 8 = 7    ( 𝐿𝐻𝑆) 

[𝑎 × (𝑏 × 𝑐)]𝑚𝑜𝑑 𝑛 = [1 × (5 × 3)]𝑚𝑜𝑑 8 = [1 𝑚𝑜𝑑 8 × 15 𝑚𝑜𝑑 8 ]𝑚𝑜𝑑 8 = 

[7]𝑚𝑜𝑑 8 = 7       (𝑅𝐻𝑆) 

LHS = RHS (proved) 

Distributive Law: 
1. [𝑎 × (𝑏 + 𝑐)]𝑚𝑜𝑑 𝑛 = [1 × (5 + 3)]𝑚𝑜𝑑 8 = [1 𝑚𝑜𝑑 8 × 8 𝑚𝑜𝑑 8] = [0]𝑚𝑜𝑑 8 = 0   (𝐿𝐻𝑆) 

[(𝑎 × 𝑏) + (𝑎 × 𝑐)]𝑚𝑜𝑑 𝑛 = [(1 × 5) + (1 × 3)]𝑚𝑜𝑑 8 = [5 + 3]𝑚𝑜𝑑 8 = 0    (𝑅𝐻𝑆) 

LHS = RHS (proved) 

2. [𝑎 + (𝑏 × 𝑐)]𝑚𝑜𝑑 𝑛 = [1 + (5 × 3)]𝑚𝑜𝑑 8 = [1 𝑚𝑜𝑑 8 + 15 𝑚𝑜𝑑 8] = [1 + 7]𝑚𝑜𝑑 8 = 0      (𝐿𝐻𝑆) 
[(𝑎 + 𝑏) × (𝑎 + 𝑐)]𝑚𝑜𝑑 𝑛 = [(1 + 5) × (1 + 3)]𝑚𝑜𝑑 8 = [6 𝑚𝑜𝑑 8 × 4 𝑚𝑜𝑑 8] = 

24 𝑚𝑜𝑑 8 = 0       (𝑅𝐻𝑆) 

Identities: 
1. (0 + 𝑎)𝑚𝑜𝑑 𝑛 = (0 + 1)𝑚𝑜𝑑 8 = 1 
2. (1 × 𝑎)𝑚𝑜𝑑 𝑛 = (1 × 1)𝑚𝑜𝑑 8 = 1 

Inverse: 
1. 𝑏 + 𝑘 = 0 𝑚𝑜𝑑 𝑛    𝑤ℎ𝑒𝑟𝑒 𝑘 = (−𝑏)          ℎ𝑒𝑟𝑒 𝑘 =  −5  

[5 + (−5)]𝑚𝑜𝑑 8 = 0 

2. 𝑏 × 𝑘 = 1 𝑚𝑜𝑑 𝑛    𝑤ℎ𝑒𝑟𝑒 𝑘 =  𝑏−1        ℎ𝑒𝑟𝑒 𝑘 = 5  
[5 × 5]𝑚𝑜𝑑 8 = [25]𝑚𝑜𝑑 8 = 1 

2 c 117 𝑚𝑜𝑑 13 = 𝟏1 × 11 × 11 × 11 × 11 × 11 × 11 =  19487171 𝑚𝑜𝑑 13 = 2 
Module 2 
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3 a FEISTEL CIPHER STRUCTURE: 
1. The inputs to the encryption algorithm are a plaintext block of length 2w bits and a key K.  
2. The plaintext block is divided into two halves, L0 and R0.  
3. The two halves of the data pass through n rounds of processing and then combine to produce the 

ciphertext block.  
4. Each round i has as inputs 𝐿𝑖−1  𝑎𝑛𝑑  𝑅𝑖−1  derived from the previous round, as well as a 

subkey 𝐾𝑖   derived from the overall K. The subkeys  𝐾𝑖   are different from K and from each other. 
5. 16 rounds are used, although any number of rounds could be implemented. All rounds have the same 

structure. 
6. A substitution is performed on the left half of the data. This is done by applying a round function F to 

the right half of the data and then taking the exclusive-OR of the output of that function and the left 
half of the data. 

7. The round function 𝐹 has the same general structure for each round. The round function 𝐹 is 
represented as 𝐹(𝑅𝐸𝑖 , 𝐾𝑖+1)                           

8. Following this substitution, a permutation is performed that consists of the interchange of the two 
halves of the data. 

 
Figure: Feistel Encryption and Decryption (16 rounds) 

9. Feistel network depends on the choice of the following parameters and design features: 
a) Block size: larger block sizes mean greater security, but it reduces encryption/decryption speed 

for a given algorithm. The greater security is achieved by greater diffusion. Traditionally, a block 
size of 64 bits has been considered a reasonable tradeoff and was nearly universal in block cipher 
design. However, the new AES uses a 128-bit block size. 

b) Key size: Larger key size means greater security but may decrease encryption decryption speed. 
The greater security is achieved by greater resistance to brute-force attacks and greater 
confusion. Key sizes of 64 bits or less are now widely considered being inadequate and 128 bits 
has become a common size. 

c) Number of rounds: The essence of the Feistel cipher is that a single round offers inadequate 
security but that multiple rounds offer increasing security. A typical size is 16 rounds. 
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d)  Subkey generation algorithm: Greater complexity in this algorithm should lead to greater 
difficulty of cryptanalysis. 

e)  Round function F: Again, greater complexity generally means greater resistance to 
cryptanalysis. 

10. There are two other considerations in the design of a Feistel cipher: 
a) Fast software encryption/decryption: Encryption is embedded in applications hence the speed 

of execution of the algorithm becomes a concern. 
b) Ease of analysis: Although we would like to make our algorithm as difficult as possible to 

cryptanalyze, there is great benefit in making the algorithm easy to analyze. That is, if the 
algorithm can be concisely and clearly explained, it is easier to analyze that algorithm for 
cryptanalytic vulnerabilities and therefore develop a higher level of assurance as to its strength. 
DES, for example, does not have an easily analyzed functionality. 

11. Feistel Decryption Algorithm: 
a) Decryption with a Feistel cipher is same as the encryption process. 
b) In decryption the ciphertext is used as input to the algorithm, and the  subkeys 𝐾𝑖  are used in 

reverse order. 
c) That is, 𝐾𝑛  is used in the first round, 𝐾𝑛−1  in the second round, and so on, until 𝐾1  is used in 

the last round. It is an advantage because no  need to implement two different algorithms; 
one for encryption and one for decryption. 

d) For clarity, the notation 𝐿𝐸𝑖  𝑎𝑛𝑑 𝑅𝐸𝑖    is used for data traveling through the encryption 
algorithm and 𝐿𝐷𝑖  𝑎𝑛𝑑 𝑅𝐷𝑖    for data traveling through the decryption algorithm. 

e) The diagram indicates that, at every round, the intermediate value of the decryption process 
is equal  to the corresponding value of the encryption process with the two halves of the 
value swapped. i.e. 𝑅𝐸𝑖||𝐿𝐸𝑖   =  𝐿𝐷16−𝑖||𝑅𝐷16−𝑖  

f) Example: (for better clarity) 

 
Figure: Feistel Example 

3 b DES Encryption : 

 



 

6 
 

Figure: General Depiction of DES Encryption Algorithm 

64 bit key is used but every 8th bit is the parity bit hence it is taken as 56 bit key. Initially the key is passed 
through the permutation function. For each 16 round, a sub key 𝐾𝑖  is produced by the combination of left 
circular shift and permutation. The same permutation function is used in each round. 
The plain text are processed through these phases 

a) Initial Permutation 
b) 16 rounds of same function 
c) Swap 
d) Final Permutation 

 
Figure: DES Encryption and Decryption  

 
Initial Permutation and Final Permutation: 
The input is 64 bit. These inputs are permuted according to a predefined rule.  The permutation table contains 
a permutation of the number from 1 to 64. These permutation table and inverse permutation table can be 
designed such that the original bits can be restored. 

 
DES Encryption:  

a) In DES Encryption, there are two inputs to the encryption function:  
i. the plaintext to be encrypted 

ii. Key 
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b) In this case, the plaintext must be 64 bits in length and the key is 56 bits in length. 
c) The processing of the plaintext proceeds in three phases. 

i. First, the 64-bit plaintext passes through an initial permutation (IP) that rearranges 
the bits to produce the permuted input. 

ii. This is followed by a phase consisting of sixteen rounds of the same function, which 
involves both permutation and substitution functions.  

iii. The left and right halves of the output are swapped to produce the preoutput. 
iv. Finally, the pre-output is passed through a permutation  [IP−1] that is the inverse of 

the initial permutation function, to produce the 64-bit ciphertext. 
d) With the exception of the initial and final permutations, DES has the exact structure of a 

Feistel cipher. 
Key Generation: 

a) In DES, 56-bit key is used.  
b) Initially, the key is passed through a permutation function. 
a) Then, for each of the sixteen rounds, a subkey (𝐾𝑖) is produced by the combination of a left 

circular shift and a permutation. 
b) The permutation function is the same for each round, but a different subkey is produced 

because of the repeated shifts of the key bits. 
DES Decryption: 

a) As with any Feistel cipher, decryption uses the same algorithm as encryption, except that the 
application of the subkeys is reversed. 

b) Additionally, the initial and final permutations are reversed.  
3 c Feistel network depends on the choice of the following parameters and design features: 

a) Block size: larger block sizes mean greater security, but it reduces encryption/decryption speed for a 
given algorithm. The greater security is achieved by greater diffusion. Traditionally, a block size of 64 
bits has been considered a reasonable tradeoff and was nearly universal in block cipher design. 
However, the new AES uses a 128-bit block size. 

b) Key size: Larger key size means greater security but may decrease encryption decryption speed. The 
greater security is achieved by greater resistance to brute-force attacks and greater confusion. Key 
sizes of 64 bits or less are now widely considered being inadequate and 128 bits has become a 
common size. 

c) Number of rounds: The essence of the Feistel cipher is that a single round offers inadequate security 
but that multiple rounds offer increasing security. A typical size is 16 rounds. 

d) Subkey generation algorithm: Greater complexity in this algorithm should lead to greater difficulty 
of cryptanalysis. 

e) Round function F: Again, greater complexity generally means greater resistance to cryptanalysis. 
4 a AES doesn’t use the Feistel structure. Feistel structure, half of the data block is used to modify the other half of 

the data block and then the halves are swapped. AES instead processes the entire data block as a single matrix 
during each round using substitutions and permutation. The key that is provided as input is expanded into an 
array of forty-four 32-bit words, w[i]. Four different stages are used, one of permutation and three of 
substitution: 

a) Substitute bytes: Uses an S-box to perform a byte-by-byte substitution of the block 
b) ShiftRows: A simple permutation 
c) MixColumns: A substitution that makes use of arithmetic over GF(28) 
d) AddRoundKey: A simple bitwise XOR of the current block with a portion of the expanded key 

The cipher begins with an AddRoundKey stage, followed by nine rounds that each includes all four stages, 
followed by a tenth round of three stages. AddRoundKey stage makes use of the key.The cipher begins and ends 
with an AddRoundKey stage.  Each stage is easily reversible. For the Substitute Byte, ShiftRows, and 
MixColumns stages, an inverse function is used in the decryption algorithm. For the AddRoundKey stage, the 
inverse is achieved by XORing the same round key to the block, using the result that A ⊕ B ⊕ B = A. In AES, the 
decryption algorithm is not identical to the encryption algorithm. 
 
As all stages are reversible, it is easy to perform decryption to recover the plain text. Encryption and decryption 
going in opposite vertical directions. The first N - 1 rounds consist of four distinct transformation functions: 

• SubBytes, 
• ShiftRows,  
• MixColumns,  
• AddRoundKey 

The final round contains only three transformations those are SubBytes, ShiftRows and AddRoundKey, and 
there is an initial single transformation (AddRoundKey) before the first round, which can be considered 
Round 0. 
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Figure: AES Encryption and Decryption 

4 b AES KEY EXPANSION: 
Key Expansion Algorithm: 
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1. The AES key expansion algorithm takes as input a four-word (16-byte) key and produces a linear 

array of 44 words (176 bytes). 

2. The key is copied into the first four words of the expanded key. 

3. The remainder of the expanded key is filled in four words at a time.  

4. Each added word w[i] depends on the immediately preceding word, w[i - 1], and the word four 

positions back, w[i - 4] and a simple XOR is used 

5. For a word whose position in the w array is a multiple of 4, a more complex function ‘g’  is used. 

6. The generation of the expanded key, using the symbol g to represent that complex function.  

7. The function ‘g’ consists of the following sub-functions: 

a. Perform a one-byte left circular rotation. This means that an input word [B0, B1, B2, B3] is 

transformed into [B1, B2, B3, B0]. 

b. Perform a byte substitution using the S-box table. 

c. The result of step 1 and step 2 is XORed with a Round Constant RC[j] 

The round constant is a word in which the three rightmost bytes are always 0 

                    
4 c ShiftRows Transformation: 

 

 
Figure: AES Encryption Round 

1. The first row of State is not altered.  

2. For the second row, a 1-byte circular left shift is performed. 

3. For the third row, a 2-byte circular left shift is performed.  

4. For the fourth row, a 3-byte circular left shift is performed. 
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5. The inverse shift row transformation performs the circular shifts in the opposite direction 

for each of the last three rows, with a 1-byte circular right shift for the second row, and so on. 

 
Hint: 

 
 

Module 3 
5 a GROUP RING AND FIELDS:  

The combination of the set and the operations that are applied to the elements of the set is called an algebraic 
structure. There are 3 common algebraic structures 

a) Group 
b) Rings 
c) Fields 

 
GROUP:  

1. A group (G) is a set of elements with a binary operation (•) that satisfies four properties (or axioms). 
It is denoted as {G, • } 

2. A commutative group is also called abelian group. Abelian group is a group in which the operator 
satisfies the four properties for group plus an extra property i.e. commutativity property. 

3. The 4 properties plus commutativity are defined as follows: 

 

Abelian Group: 

                 
Example: {𝑍10, +} is a commutative group/ abelian group. 
The elements in 𝑍10 𝑎𝑟𝑒 {0,1, 2,3,4,5,6,7,8,9} 
Closure:It satisfies because any if any two elements are added, the resultant will be in this group. 
Associativity: It doesn’t matter in which order we apply the operation. 
Indentity Element: ‘0’ is the identity element. 
Inverse: Additive inverse of each element exist. 
Commutative: Commutative is satisfied because 𝑎 + 𝑏 = 𝑏 + 𝑎 
Hence {𝑍10, +} is an abelian group. 
 

5 b FINITE FIELD OF THE FORM GF(P): 
1. Although we have fields of infinite order, only finite fields is used in cryptography.   
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2. A finite field, with a finite number of elements are very important in cryptography. 

3. For a field to be finite, the number of elements should be 𝑃𝑛 where 𝑃 is the prime and 𝑛 is a positive 

integer. 

4. The finite field of the order 𝑃𝑛 is generally written as 𝐺𝐹(𝑃𝑛), 𝐺𝐹 stands for Galois field, in honor of 

the mathematician who first studied finite fields. 

5. There are 2 special cases: 

a) For 𝑛 = 1, it is finite field 𝐺𝐹(𝑃) 

b) For 𝑛 > 1, its finite field has different structure. 

6. A Galois field, 𝐺𝐹(𝑃𝑛) is a finite field with 𝑃𝑛 element. 

𝑮𝑭(𝑷)Fields: When 𝑛 = 1, we have 𝐺𝐹(𝑃) , it is same as 𝑍𝑃 
This field has the element i.e. {0,1,2,3, … . (𝑃 − 1)} with two arithmetic operations (addition and 
multiplications). 
𝐺𝐹(2) = {0,1}  𝑎𝑛𝑑 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑎𝑟𝑒 [+,×] 

 
In this case, the addition is equivalent to exclusive OR (XOR) operation and multiplication is equivalent to 
logical AND operation. 
Example: Define 𝐺𝐹(5) with addition and multiplication operation. 
𝐺𝐹(5) = {0,1,2,3,4} 𝑎𝑛𝑑 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑎𝑟𝑒 [+,×] 

 
 

5 c Arithmetic in 𝒁𝟖/𝑮𝑭(𝟖): 
Addition Table Multiplication Table 

+ 0 1 2 3 4 5 6 7 
0 0 1 2 3 4 5 6 7 
1 1 2 3 4 5 6 7 0 
2 2 3 4 5 6 7 0 1 
3 3 4 5 6 7 0 1 2 
4 4 5 6 7 0 1 2 3 
5 5 6 7 0 1 2 3 4 
6 6 7 0 1 2 3 4 5 
7 7 0 1 2 3 4 5 6 

 

X 0 1 2 3 4 5 6 7 
0 0 0 0 0 0 0 0 0 
1 0 1 2 3 4 5 6 7 
2 0 2 4 6 0 2 4 6 
3 0 3 6 1 4 7 2 5 
4 0 4 0 4 0 4 0 4 
5 0 5 2 7 4 1 6 3 
6 0 6 4 2 0 6 4 2 
7 0 7 6 5 4 3 2 1 

 

 
𝑎 0 1 2 3 4 5 6 7 
−𝑎 0 7 6 5 4 3 2 1 
𝑎−1 - 1 - 3 - 5 - 7 

 

6 a Fermat’s Theorem: Fermat’s Theorem and Euler’s Theorem are mostly used in public key cryptosystem. 
Fermat’s Theorem and Euler’s Theorem are helpful for quickly finding solution to exponentiations. 
Fermat’s theorem has 2 versions of the theorem. 
First Version: If ‘P’ is prime and ‘a’ is any integer but not divisible by ‘P’ then 

 

Second Version: The second version removes the condition if ‘P’ is a prime and ‘a’ is any integer, then 
𝑎𝑃𝑚𝑜𝑑 𝑃 = 𝑎 

Example: 
718𝑚𝑜𝑑 19 = 1 
 35𝑚𝑜𝑑 5 = 3 
105𝑚𝑜𝑑 5 = 0 
Proof: 
718𝑚𝑜𝑑 19 =  76 𝑚𝑜𝑑 19 × 76 𝑚𝑜𝑑 19 × 76 𝑚𝑜𝑑 19 
= 117649 𝑚𝑜𝑑 19 × 117649 𝑚𝑜𝑑 19 × 117649 𝑚𝑜𝑑 19 
= 1 𝑚𝑜𝑑 19 × 1 𝑚𝑜𝑑 19 × 1 𝑚𝑜𝑑 19 = 1 

𝑎𝑃−1𝑚𝑜𝑑 𝑃 = 1 
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6 b Euler’s Theorem: Euler’s theorem can be thought as a generalization of a Fermat’s theorem. The modulus in 
the Fermat’s theorem is a prime, but the modulus in Euler’s theorem is an integer. 
Like Fermat’s theorem there are 2 versions of Euler’s theorem 
First Version: If ‘a’ and ‘n’ are relatively prime then  

 

Second Version: like Fermat’s theorem, it removes the condition that ‘a’ and ‘n’ should be Co-prime. 

𝑎𝐾.∅(𝑛)+1 𝑚𝑜𝑑 𝑛 = 𝑎 
Example:  
2062𝑚𝑜𝑑 77 = 15 
 624𝑚𝑜𝑑 35 = 1 
105𝑚𝑜𝑑 5 = 0 
Proof: 
624𝑚𝑜𝑑 35 = 1 = 66 𝑚𝑜𝑑 35 × 66 𝑚𝑜𝑑 35 × 66 𝑚𝑜𝑑 35 × 66 𝑚𝑜𝑑 35 
= 46656 𝑚𝑜𝑑 35 × 46656 𝑚𝑜𝑑 35 × 46656 𝑚𝑜𝑑 35 × 46656 𝑚𝑜𝑑 35 
= 1 𝑚𝑜𝑑 35 × 1 𝑚𝑜𝑑 35 × 1 𝑚𝑜𝑑 35 × 1 𝑚𝑜𝑑 35 = 1 

𝑎∅(𝑛)𝑚𝑜𝑑 𝑛 = 1 

6 c Discrete Logarithm: Discrete logarithm are the fundamental to a number of public key algorithm. We need a 
numerical procedure which is easy in one direction and hard in other way. This brings us to use modular 
arithmetic. 
Example: 35 𝑚𝑜𝑑 17 = 5   𝑏𝑢𝑡 𝑖𝑡 𝑖𝑠 𝑑𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡 𝑡𝑜 𝑓𝑖𝑛𝑑   3𝑥 𝑚𝑜𝑑 17 = 5   . 
It is called discrete logarithm problem. 
Modular Arithmetic  
54 𝑚𝑜𝑑 7 = 2 
𝑑 log5,7(2) = 4 

 
Example:  𝑎𝑖  𝑚𝑜𝑑 7 = 𝑥  Write the possible exponent. 
𝑑 log𝑎,7(𝑥) = 𝑖    (ℎ𝑒𝑟𝑒 𝑎 ℎ𝑎𝑠 𝑡𝑜 𝑏𝑒 𝑐ℎ𝑜𝑠𝑒𝑛 𝑤𝑖𝑠𝑒𝑙𝑦)   

𝑎 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 
1 1 1 1 1 1 1 
2 2 4 1 2 4 1 
3 3 2 6 4 5 1 
4 4 2 1 4 2 1 
5 5 4 6 2 3 1 
6 6 1 6 1 6 1 

As our modulus is 7 up to power 6 has to be written. Here 3 and 5 are the primitive root (generator), because 
it generated the entire set of integers of modulus. 

1. If we are using mod 7, then the base should be either 3 or 5, because they give unique answer, if we 
choose other than that, it will give multiple answers. 

2. i.e. If we use exponentiation for encryption, then we have to use discrete logarithm for decryption. If 
we want to find the discrete logarithm, then the base must be primitive root. 

3. Finding discrete logarithm is very hard, when we have large number, it takes a long time to find the 
answer that’s why it is used for security purpose. 

4. Not all the integers have primitive roots. The only integers with primitive roots are those of the 
form  2,4, 𝑃𝛼   𝑎𝑛𝑑 𝑃2𝛼 . Where 
𝑃 𝑖𝑠 𝑎𝑛𝑦 𝑜𝑑𝑑 𝑃𝑟𝑖𝑚𝑒 (𝑖. 𝑒. 𝑎𝑙𝑙 𝑝𝑟𝑖𝑚𝑒 𝑒𝑥𝑐𝑒𝑝𝑡 2) 𝑎𝑛𝑑 𝛼 𝑖𝑠 𝑎 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 

Module 4 
7 a Essential steps in public key cryptosystem: 

1. Each user generates a pair of key to be used for encryption and decryption. 

2. Each user place one of the key in public register and other one is kept private. Each user 

maintains a collection of public keys obtained from others. 

3. If Bob wants to send a confidential message to Alice, Bob encrypts the message using Alice’s 

public key. 

4. When Alice receives the message, it decrypts the message using its private key. 

5. As long as the user’s private key is protected the communication is secure. At any time a 

system can change its private key and publish the companion public key to replace its old 

public key. 
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6. The key used in symmetric key is named as secret key and the 2 keys used in public key 

cryptography are named as public key and private key. 

𝑁𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑈𝑠𝑒𝑑:   𝐾𝑎 = 𝑆𝑒𝑐𝑟𝑒𝑡 𝑘𝑒𝑦 𝑜𝑓 𝑠𝑒𝑛𝑑𝑒𝑟 ′𝐴′ 

𝑃𝑈𝑎 = 𝑃𝑢𝑏𝑙𝑖𝑐 𝑘𝑒𝑦 𝑜𝑓 𝑠𝑒𝑛𝑑𝑒𝑟 ′𝐴
′                          𝑃𝑅𝑎 = 𝑃𝑟𝑖𝑣𝑎𝑡𝑒 𝑘𝑒𝑦 𝑜𝑓 𝑠𝑒𝑛𝑑𝑒𝑟 ′𝐴′ 

 

 
Public Key Cryptosystem-Secrecy:  

1. Source ‘A’ sends the plaintext  𝑋 = [𝑋1, 𝑋2, ……𝑋𝑚]. The 𝑚 element of 𝑋 is some alphabet in 

the message. 

2. As the message is intended for user ‘B’ , ‘B’ generates 2 keys  

a) Private Key (𝑃𝑅𝑏) 

b) Public Key (𝑃𝑈𝑏) and 𝑃𝑈𝑏is publicly available so that it is accessible by A. 

3. With the message 𝑋 and encryption key 𝑃𝑈𝑏 , sender forms the cipher text  

𝑌 = [𝑌1, 𝑌2, ……𝑌𝑁]       𝑤ℎ𝑒𝑟𝑒   𝑌 = 𝐸(𝑃𝑈𝑏 , 𝑋) 

4. At the receiver, the intended receiver matches the key and find the message 

𝑋 = 𝐷(𝑃𝑅𝑏 , 𝑌) 

5. It is assumed that the cryptanalysts have the knowledge of encryption (𝐸)and decryption 

(𝐷)algorithms. If the cryptanalyst is interested only in this particular message, then its focus 

is to recover 𝑋, by generating a plaintext estimate  𝑋̂. But if Cryptanalyst is interested in being 

able to read future message as well, it will try to recover 𝑃𝑅𝑏 , by generating an estimate  𝑃𝑅𝑏̂ . 

6. Either of the 2 keys can be used for encryption, with other being used for decryption. This 

above scheme provides confidentiality. 

7. As anybody can encrypt the message using 𝐵′𝑠 public key and claim to be came from  ′𝐴′. 
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Public Key Cryptosystem-Authentication: 

 
1. If ′𝐴′ wants to communicate to ′𝐵′, then  ′𝐴′ encrypt the message using 𝐴′𝑠 private key. 

2. ′𝐵′ can decrypt the message using 𝐴′𝑠 public key. 

3. As message was encrypted using 𝐴′𝑠 private key, only ′𝐴′ could prepare the message. This 

entire message serves as a digital signature. 

4. It is important to alter the message without access to 𝐴′𝑠 private key. So this message is 

authenticated both in terms of source and data integrity. 

5. The encryption and decryption can be represented as : 

𝑌 = 𝐸(𝑃𝑅𝑎, 𝑋) 

𝑋 = 𝐷(𝑃𝑈𝑎 , 𝑌) 

6. This public key encryption doesn’t provide confidentiality because all will have 𝐴′𝑠 public 

key hence can decrypt the message easily. 

7. It is safe from alteration but not from eavesdropping. 

7 b Description of the Algorithm: 
1. RSA uses the expression with exponentials. 

2. Plain text is encrypted in block. 

3. The plain text 𝑀 and cipher text 𝐶 can be represented as 

𝐶 = 𝑀𝑒  𝑚𝑜𝑑 𝑛 

𝑀 = 𝐶𝑑 𝑚𝑜𝑑 𝑛 = (𝑀𝑒)𝑑  𝑚𝑜𝑑 𝑛 = 𝑀𝑒𝑑  𝑚𝑜𝑑 𝑛 
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4. Both the sender and receiver know the value of   𝑛. 

5. Sender knows the value of  𝑒 and only receiver know the value of  𝑑. 

6. This is a public key encryption algorithm with a public key of 𝑃𝑈 = {𝑒, 𝑛} and a private key of 𝑃𝑅 =

{𝑑, 𝑛} 

7. For the encryption algorithm to satisfy for public key encryption, the following requirements must be 

met. 

a) It is possible to find Message (𝑀) if 𝑒, 𝑑 𝑎𝑛𝑑 𝑛 are known i.e. 𝑀𝑒𝑑  𝑚𝑜𝑑 𝑛 = 𝑀 

 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑀 < 𝑛 

b) It is relatively easy to calculate 𝑀𝑒  𝑚𝑜𝑑 𝑛 and 𝐶𝑑 𝑚𝑜𝑑 𝑛  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑀 < 𝑛 

c) It is infeasible to determine 𝑑 given 𝑒  𝑎𝑛𝑑 𝑛. 

8. The equation 𝑀𝑒𝑑  𝑚𝑜𝑑 𝑛 = 𝑀 is only valid if 𝑒  𝑎𝑛𝑑 𝑑 are multiplicative inverse 𝑚𝑜𝑑𝑢𝑙𝑜 ∅(𝑛).  Where 

∅(𝑛) is the Euler totient function. i.e. 𝑒𝑑 𝑚𝑜𝑑 ∅(𝑛) = 1  means 𝑒 𝑎𝑛𝑑 𝑑 should be relatively prime. 

 
7 c 𝑛 = 𝑝𝑞 = 5 × 11 = 55 

∅(𝑛) = (𝑝 − 1) × (𝑞 − 1) = 4 × 10 = 40 
𝑒 = 3   𝑎𝑛𝑑    𝑚 = 9 
𝑒𝑑 𝑚𝑜𝑑 ∅(𝑛) ≡ 1 => 𝑑 =  𝑒−1 𝑚𝑜𝑑 ∅(𝑛) => 𝑑 = 3−1 𝑚𝑜𝑑 40 => 𝑑 = −13 𝑚𝑜𝑑 40 = 𝟐𝟕 
𝑞 𝑟1           𝑟2 𝑟 𝑡1           𝑡2 𝑡 = 𝑡1 − 𝑞𝑡2 
13 40            3 1 0           1 −13 
3 3             1 0 1         − 13 40 

 1             0  −𝟏𝟑          40  
𝑃𝑈 = {3,55}   𝑎𝑛𝑑   𝑃𝑅 = {27,55}   
𝐶 = 𝑀𝑒  𝑚𝑜𝑑 𝑛 => 𝐶 = 93𝑚𝑜𝑑 55 = 14 
𝑀 = 𝐶𝑑 𝑚𝑜𝑑 𝑛 = 1427 𝑚𝑜𝑑 55 = 9 
1427 𝑚𝑜𝑑 55 

(27)10 = (11011)2 
1: 14 𝑚𝑜𝑑 55 = 14 
1: (14)2 × 14 𝑚𝑜𝑑 55 = 49 
0: (49)2𝑚𝑜𝑑 55 = 36 

1: (36)2 × 14 𝑚𝑜𝑑 55 = 49 

1: (49)2 × 14 𝑚𝑜𝑑 55 = 9 
 

8 a Diffie Hellman Key Exchange Algorithm: 
1. In this scheme, there are two publicly known numbers those are: a prime number q and an integer 𝛼  

that is a primitive root of q. 
2. User 𝐴 selects a random integer 𝑋𝐴 < 𝑞 and compute  𝑌𝐴 = 𝛼

𝑋𝐴  𝑚𝑜𝑑 𝑞. 
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3. User 𝐵 selects a random integer 𝑋𝐵 < 𝑞 and compute  𝑌𝐵 = 𝛼
𝑋𝐵 𝑚𝑜𝑑 𝑞. 

4. User A computes the key as 𝐾𝐴 = 𝑌𝐵
𝑋𝐴  𝑚𝑜𝑑 𝑞    

5. User B computes the key as 𝐾𝐵 = 𝑌𝐴
𝑋𝐵  𝑚𝑜𝑑 𝑞    

𝐾𝐴 = 𝑌𝐵
𝑋𝐴  𝑚𝑜𝑑 𝑞 

𝐾𝐴 = (𝛼
𝑋𝐵 𝑚𝑜𝑑 𝑞)𝑋𝐴  𝑚𝑜𝑑 𝑞 

𝐾𝐴 = (𝛼
𝑋𝐵)𝑋𝐴  𝑚𝑜𝑑 𝑞 

𝐾𝐴 = 𝛼
𝑋𝐵𝑋𝐴 𝑚𝑜𝑑 𝑞 

𝐾𝐴 = (𝛼
𝑋𝐴)𝑋𝐵 𝑚𝑜𝑑 𝑞 

𝐾𝐴 = (𝛼
𝑋𝐴  𝑚𝑜𝑑 𝑞)𝑋𝐵  𝑚𝑜𝑑 𝑞 

𝐾𝐴 = 𝑌𝐴
𝑋𝐵  𝑚𝑜𝑑 𝑞 

𝐾𝐴 = 𝐾𝐵  

 
8 b ELLIPTIC CURVE OVER REAL NUMBER: 

1. Elliptic curves are not ellipses. 

2. It is named because; they are described by cubic equation. 

3. The elliptic curves is represented as 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 

4. To plot such a curve, we need to compute 𝑦 = √𝑥3 + 𝑎𝑥 + 𝑏 

5. For given value of  𝑎 𝑎𝑛𝑑 𝑏, the plot consists of +ve and –ve values of 𝑦 for each values of  𝑥. Hence the 

curve is symmetrical about 𝑦 = 0. 

6. An elliptic curve has a single element denoted as 0 and called the point at infinity. 

7. Elliptic curve is represented as 𝐸(𝑎, 𝑏) 

8. The points on the curves are used for cryptography. 

 
9. There are 2 types of elliptic curves. 
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a) Singular Elliptic curve 

b) Non-Singular Elliptic curve 

10. In cryptography we are interested in non-singular elliptic curve, because it has 3 distinct roots. 

Geometric Description of Addition: 
If three points on an elliptic curve lie on a straight line, their sum is O. From this definition, we can define the 
rules of addition over an elliptic curve. 

1. O serves as the additive identity such that P + O = P. 

2. if P = (x, y), then -P = (x, -y) such that P + (-P) = P - P = O. 

3. To add two points P and Q , draw a straight line between them and find the third point of intersection 

R. such that P + Q = -R. 

4. If two points, P and –P are joined by a vertical line, will intersect the curve at the infinity point. i.e. P + 

(-P) = O 

5. To find 2Q, draw the tangent line and find the other point of intersection S. Such that Q + Q = 2Q = -S.  

 
Algebraic Description of Addition: 

If the coordinates of P and Q are P = (𝑥𝑃 , 𝑦𝑃)and Q = (𝑥𝑄 , 𝑦𝑄)  then the coordinates of R will be 

𝐼𝑓    𝑃 ≠ 𝑄  (𝑖. 𝑒. 𝑃 + 𝑄 = 𝑅) 𝐼𝑓    𝑃 = 𝑄  (𝑖. 𝑒. 𝑃 + 𝑃 = 2𝑃) 
𝑥𝑅 = ∆

2 − 𝑥𝑃 − 𝑥𝑄  

𝑦𝑅 = ∆(𝑥𝑃 − 𝑥𝑅) − 𝑦𝑃  

𝑊ℎ𝑒𝑟𝑒  ∆= (
𝑦𝑄 − 𝑦𝑝

𝑥𝑄 − 𝑥𝑃
) 

𝑥𝑅 = ∆
2 − 2𝑥𝑃  

𝑦𝑅 = ∆(𝑥𝑃 − 𝑥𝑅) − 𝑦𝑃  

𝑊ℎ𝑒𝑟𝑒  ∆= (
3𝑥𝑃

2 + 𝑎

2𝑦𝑃
) 

 

8 c ELLIPTIC CURVE CRYPTOGRAPHY: 
1. Principal attraction of ECC compared to RSA is; it provides equal security for a smaller key size. 

2. It reduces the processing overhead. 

3. Though ECC has been explained before some years, confidence level in ECC is not yet as high as that in 

RSA. 

4. ECC is more difficult to explain than either RSA or Diffie-Hellman. 

5. Before understanding the ECC, the concept of abelian group should be known. 

Abelian Group: An abelian group denoted as {G, • }, is a set of elements with a binary operations denoted 
by •. If these following axioms are obeyed. 
 

 

 

 

6. Public key cryptosystem uses the abelian group. 

7. E.g. Diffie Hellman Key exchange uses multiplication operation i.e.  

a) In Diffie Hellman algorithm encryption is done as 𝑎𝐾  𝑚𝑜𝑑 𝑞 

𝑎𝐾  𝑚𝑜𝑑 𝑞 = (𝑎 × 𝑎 × 𝑎…× 𝑎)⏟            
𝐾 𝑡𝑖𝑚𝑒𝑠

 𝑚𝑜𝑑 𝑞  
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To attack Diffie-Hellman, the attacker must determine 𝐾 given 𝑎 𝑎𝑛𝑑 𝑎𝐾  this is the discrete 

logarithm problem. 

b) Whereas, for elliptic curve cryptography, the operation used is addition i.e. 

𝑎 × 𝐾 = (𝑎 + 𝑎 +⋯+ 𝑎)⏟          
𝐾 𝑡𝑖𝑚𝑒𝑠

  𝑚𝑜𝑑 𝑞 

To Attack ECC, the attacker must determine 𝐾 given 𝑎 𝑎𝑛𝑑 (𝑎 × 𝐾) 

Elliptic curves can be defined as  
(i) Elliptic curve over real Number  

(ii) Elliptic curve over 𝑍𝑝 

(iii) Elliptic curves over 𝐺𝐹(2𝑚) 

Module 5 
9 a LINEAR FEEDBACK SHIFT REGISTERS (LFSR): 

Shift register sequences are used in both cryptography and coding theory. E.g., stream ciphers based on shift 

registers have been used in military cryptography.  A feedback shift register is made up of two parts: 

➢ A shift registers 

➢ Feedback function. 

The shift register is a sequence of bits. (If it is n-bits long, it is called an n-bit shift register.). Each time a bit is 

needed, all the bits in the registers are shifted 1 bit to the right. The new left-most bit is computed as a function 

of the other bits. The output of the shift register is the 1 bit, often the least significant bit. The period of a shift 

register is the length of the output sequence before it starts repeating. Cryptographers have liked stream ciphers 

made up of shift registers.  

 
Figure: feedback shift register 

• The simplest kind of feedback shift register is a linear feedback shift register (LFSR). The feedback 

function is simply the XOR of certain bits in the register, the list of these bits is called tap sequence 

also called as Fibonacci configuration.  

 
Figure: Linear feedback shift register 

• The simple 4-bit LFSR can be shown in figure below. Here the first and the fourth bits are tapped. If it 

is initialized with the value 1111, it produces the following sequence of internal states before repeating. 

 

 
Figure: 4-bit LFSR 

S.N. Register state  Output  
1 1111 1 
2 0111 1 
3 1011 1 
4 0101 1 
5 1010 0 
6 1101 1 
7 0110 0 
8 0011 1 
9 1001 1 
10 0100 0 
11 0010 0 
12 0001 1 
13 1000 0 
14 1100 0 
15 1110 0 
16 1111 0 
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The output sequence is the string of least significant bits.: 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 …… 

• The shift registers filled with zeros will cause the LFSR to output a never-ending stream of zeros – this 

is particularly not useful. 

• Only LFSR with certain tap sequences will cycle through all 2𝑛 − 1 internal states; these are maximal 

period LFSRs. The resulting output is called an m-sequence. 

• For maximal period LFSR, the polynomial formed from a tap sequence plus the constant 1 must be 

primitive polynomial mod 2.  

• A primitive polynomial of degree n is an irreducible polynomial if it divides 𝑥2
𝑛−1

+ 1 but not 𝑥𝑑 + 1 

for any d that divides  2𝑛 − 1. 

• There is no easy way to generate the primitive polynomial mod 2 for a given degree. The easiest way is 

to choose a random polynomial and test whether it is primitive. But it is complicated as- something like 

testing random numbers for primality. 

• E.g. the polynomial (32, 7, 5, 3, 2, 1, 0) means that the following polynomial is primitive modulo 2. 

(Polynomial is: 𝑥32 + 𝑥7 + 𝑥5 + 𝑥3 + 𝑥2 + 𝑥 + 1).  

• It’s easy to turn this into maximal-period LFSR. The first number is the length of the LFSR. The last 

number is always 0 and can be ignored. All the number except 0, specify the tap sequence. It means, if 

you take a 32-bit shift register and generate the new bit by XORing the thirty-second, seventh, fifth, 

third, second and first bits together, the resulting LFSR will be maximal length, it will cycle through 

232 − 1 values before repeating. The C code for the LFSR is: 
Int LFSR(){ 

     Static unsigned long ShiftRegister = 1; 

     /* Anything but 0. */ 

     ShiftRegister = ((((ShiftRegister >> 31) 

                      ^ (ShiftRegister >> 6) 

                      ^ (ShiftRegister >> 4) 

                      ^ (ShiftRegister >> 2) 

                      ^ (ShiftRegister >> 1) 

                      ^  ShiftRegister)) 

                      &   0×00000001) 

                      <<  31) 

                      | (ShiftRegister >> 1); 

     Return ShiftRegister & 0×00000001; 

} 

 
Figure: 32-bit long maximal-length LFSR 

• This code is more complicated when the shift register is longer than the computer’s word size.  

• E.g. if (a, b, 0) is primitive, then (a, a-b, 0) is also primitive. If (a, b, c, d, 0) is primitive, then (a, a-d, a-c, 

a-b, 0) is also primitive. Mathematically 

If 𝑥𝑎 + 𝑥𝑏 + 1 is primitive, so is 𝑥𝑎 + 𝑥𝑎−𝑏 + 1 

If 𝑥𝑎 + 𝑥𝑏 + 𝑥𝑐 + 𝑥𝑑 + 1 is primitive, so is 𝑥𝑎 + 𝑥𝑎−𝑑 + 𝑥𝑎−𝑐 + 𝑥𝑎−𝑏 + 1 

• Primitive polynomials are faster in software, because only two bits of the shift register have to be 

XORed to generate each new bit.  

The polynomials are generally sparse, means they have very few co-efficient. Sparseness is always a source of 
weakness, sometimes enough to break the algorithm. It is better to use dense primitive polynomial, those 
with a lot of coefficients for cryptographic applications.  Generating dense primitive polynomials modulo 2 is 
not easy. 

9 b i) Generalized Geffe Generator: 
Instead of choosing between two LFSRs, this scheme chooses between 𝑘  LFSRs, where 𝑘 is power of 2. 
There are 𝑘 + 1 LFSRs total. LFSR-1 must be clocked log2 𝑘 times faster than the other 𝑘 LFSRs. Though this 
scheme is complex than Gaffe generator, same kind of correlation attack is possible. 
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Figure: Generalized Geffe generator 

ii) Threshold Generator: 

➢ This generator tries to get around the security problems of the previous generators by using a 

variable number of LFSRs. The theory is that if we use a lot of LFSRs, it’s hard to break the 

cipher. 

➢ It is implemented by taking a large number of LFSRs and the length of all the LFSRs are 

relatively prime and all the feedback polynomials are primitive.  

➢ If more than half of the output bits are 1, then the output of the generator is 1. If more than half 

of the output bits are 0, then the output of the generator is 0. 

➢ The output of the generator is represented as:  

𝑏 = (𝑎1^𝑎2) ⊕ (𝑎1^𝑎3) ⊕ (𝑎2^𝑎3) 

➢ It is very similar to Geffe generator, except that it has a large linear complexity of 𝑛1𝑛2 +

𝑛1𝑛3 + 𝑛2𝑛3     𝑤ℎ𝑒𝑟𝑒 𝑛1, 𝑛2 𝑎𝑛𝑑 𝑛3 are the length of the first, second and third LFSRs. 

➢ This falls to correlation attack. 

 
Figure: Threshold generator 

iii) Alternating Stop-and-Go Generator: 

➢ This generator, uses three LFSRs of different length.  LFSR-2 is clocked when the output of 

LFSR-1 is 1; LFSR-3 is clocked when the output of LFSR-1 is 0.  

➢ The output of the generator is the XOR of LFSR-2 and LFSR-3.  

➢ This generator has a long period and large linear complexity. The correlation attack is possible 

against LFSR-1. 

 
Figure: Alternating stop-and-go generator 

10 a ADDITIVE GENERATORS: 
• Additive generators are extremely efficient because they produce random words instead of random 

bits. They are not secure on their own, but can be used as building blocks or secure generators. 

• The initial state of the generator is an array of n-bit words: 8-bit words, 16-bit words, 32-bit words. 

The initial state is the key. The 𝑖th word of the generator is  

𝑋𝑖 = (𝑋𝑖−𝑎 + 𝑋𝑖−𝑏 + 𝑋𝑖−𝑐 +⋯+ 𝑋𝑖−𝑚)𝑚𝑜𝑑 2
𝑛 

• If the coefficients a, b, c, … m are chosen right, the period of this generator is at least 2𝑛 − 1.  
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• Example: (55,24,0) is a primitive polynomial mod 2. This means that the following additive generator 

is maximal length. 

𝑋𝑖 = (𝑋𝑖−55 + 𝑋𝑖−24)𝑚𝑜𝑑 2
𝑛 

This works because, primitive polynomial has three coefficients. If it has more coefficient, then we need 

some additional requirements to make it maximal length. 

• Fish: 

➢ Fish is an additive generator based on techniques used in the shrinking generator. It produces 

a stream of 32-bit words which can be XORed with the plaintext stream to produce ciphertext, 

or XORed with ciphertext stream to produce plaintext.  

➢ The algorithm is named as it is Fibonacci Shrinking generator. 

➢ First, it uses two additive generators. The key is the initial values of these generators. 

𝐴𝑖 = (𝐴𝑖−55 + 𝐴𝑖−24)𝑚𝑜𝑑 2
32 

𝐵𝑖 = (𝐵𝑖−52 + 𝐴𝑖−19)𝑚𝑜𝑑 2
32 

➢ These sequences are shrunk, as a pair, depending on the least significant bit of 𝐵𝑖 : if it is 1, use 

the pair; if it is 0, ignore the pair.  

➢ 𝐶𝑗  is the sequence of used words from 𝐴𝑖  and 𝐷𝑗  is the sequence of used words from 𝐵𝑖 . These 

words are used in pairs- 𝐶2𝑗 , 𝐶2𝑗+1, 𝐷2𝑗  𝑎𝑛𝑑 𝐷2𝑗+1- to generate two 32-bit output words: 

𝐾2𝑗  𝑎𝑛𝑑 𝐾2𝑗+1. 

𝐸2𝑗 = 𝐶2𝑗⊕ (𝐷2𝑗^𝐷2𝑗+1) 

𝐹2𝑗 = 𝐷2𝑗+1^(𝐸2𝑗^𝐶2𝑗+1) 

𝐾2𝑗 = 𝐸2𝑗 ⊕𝐹2𝑗 

𝐾2𝑖 = 𝐶2𝑖+1⊕𝐹2𝑗  

➢ This algorithm is fast, Unfortunately, it is also insecure; an attack has a work factor of about 

240. 

• Pike: 

➢ Pike is the leaner, meaner version of Fish, developed by Ross Anderson, the man who broke 

Fish.  

➢ It uses three additive generators. For example: 

𝐴𝑖 = (𝐴𝑖−55 + 𝐴𝑖−24)𝑚𝑜𝑑 2
32 

𝐵𝑖 = (𝐵𝑖−57 + 𝐴𝑖−7)𝑚𝑜𝑑 2
32 

𝐶𝑖 = (𝐶𝑖−58 + 𝐶𝑖−19)𝑚𝑜𝑑 2
32 

➢ To generate the keystream word, look at the additional carry bits. 

➢ If all the three agree, then clock all three generators. If they don’t, then just clock the two 

generators that agree. Save the carry bit for the next time. The final output is the XOR of the 

three generators. 

➢ Pike is faster than Fish, as on average it requires 2.75 steps per output rather than 3 steps. 

10 b GIFFORD: 

 
Figure: Gifford 
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• It was developed by David Gifford. It was used to encrypt news wire reports in Boston area from 1984 

until 1988. 

• The algorithm has a single 8-byte register: 𝑏0, 𝑏1, ……𝑏7. 

• The key is the initial stage of the register. 

• The algorithm works in OFB (output feedback); the plaintext doesn’t affect the algorithm at all. 

• To generate the key byte 𝑘𝑖 , concatenate 𝑏0 𝑎𝑛𝑑 𝑏2 and concatenate 𝑏4 𝑎𝑛𝑑 𝑏7. Multiply the two 

together to get a 32-bit number. The third byte from the left is 𝑘𝑖 . 

• To update the register, take 𝑏1and sticky right shift it 1 bit. (Sticky right shift: the left most bit is both 

shifted and also remains in place.). Take 𝑏7 and shift it 1 bit to the left; there should be a 0 in the right-

most bit position. Take the XOR of the modified 𝑏1, the modified 𝑏7 and 𝑏0. Shift the original register 

1byte to the right and put this byte in the left most position. 

• This algorithm was broken in 1994. It concludes that, the feedback polynomial isn’t primitive and can 

be attacked. 

10 c A5: 
• A5 is a stream cipher used to encrypt GSM (Group Special Mobile). That is the non-American standard 

for digital cellular mobile telephones. It is used to encrypt the link from the telephone to the base 

station. The rest of the link is unencrypted, the telephone company can easily eavesdrop on our 

conversation. 

• Originally, it was designed to prohibit export of phones to some country. It is being discussed now, 

whether   A5 might harm export sales. There is also a rumor as, various NATO intelligence agencies had 

a catfight in the mid-1980s over whether GSM encryption should be strong or weak. Germans wanted 

strong cryptography, as they were sitting near the Soviet Union. But other counties overruled them. A5 

is a French design. 

• A British telephone company gave all the documentation to Bradford University without a 

nondisclosure agreement. It leaked and was eventually posted to the internet.  

• A5 consists of three LFSRs; the register lengths are 19,22 and 23, all the feedback polynomials are 

sparse. The output is the XOR of the three LFSRs. A5 uses variable clock control. Each register is clocked 

based on its own middle bit, XORed with the inverse threshold function of the middle bits of all three 

registers. Generally, two LFSRs clock in each round. 

• There is a trivial attack requiring 240 encryptions: Guess the contents of the first two LFSRs, then try to 

determine the third LFSR from the key stream. 

• A5 is very efficient. It passes all known statistical tests, its only weakness is, its registers are very short 

enough to make exhaustive search feasible.  

• Variant of A5 with longer shift registers and denser feedback polynomial should be secure. 

 

 

 


