




1 a) To perform a given task, an appropriate program consisting of a list of instructions is stored in the 

memory. Individual instructions are brought from the memory into the processor, which executes the 

specified operations. Data to be used as operands are also stored in the memory. Transfers between 

memory and processor are started by sending the address of the memory location to be 

accessed to the memory unit and issuing the appropriate control signals. The data is 

transferred to or from the memory. The memory and processor connection is shown in Fig. 

 

 The Instruction register (IR) holds the instruction that is currently being executed. Its 

output is available to control circuits which generate the timing signals that control various 

processing elements involved in executing the instruction. The Program Counter (PC) holds 

the address of the next instruction to be fetched and executed. During the execution of an 

instruction, the contents of the PC are updated to correspond to the address of the next 

instruction to be executed. MAR and MDR facilitate communication with the memory.MAR 

(Memory Address Register) hold the address of the location to be accessed and MDR 

(Memory Data Register) contains data written into or read out of the addressed location. 

1 b) The total time required to execute the program is known as elapse time. This is a measure 

of performance of entire computer system. The periods during which processor is active is 

used to measure the performance of processor. The sum of these periods is referred to as 

processor time. The processor time depends on the hardware involved in the execution of 

individual machine instructions. This hardware comprises the processor and the memory 

which are connected by a bus.                                       

Processor circuits are controlled by a timing signal called clock. The clock defines regular 

time intervals called clock cycles. To execute a machine instruction, the processor divides the 

action to be performed into a sequence of basic steps, such that each can be completed in one 

clock cycle. The length 𝑃  of one clock cycle is an important parameter that affects the 

processor performance. Its inverse is the clock rate, 𝑅 = 1/𝑃 which is measured in cycles per 

second.  

Let 𝑇 be the processor time required to execute a program that has been prepared by some 

high level language. The compiler generates machine level object program that corresponds 

to source program. Assume that complete execution of the program requires the execution of 

𝑁 machine language instructions. Suppose that the average number of basic steps needed to 

Figure 1.2.   Connections between the processor and the  memory.
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execute one machine instruction is 𝑆, where each basic step is completed in one clock cycle. 

If the clock rate is 𝑅  cycles per second, the program execution time is given by basic 

performance equation.  

𝑇 =
𝑁 × 𝑆

𝑅
 

 To achieve high performance, the value of 𝑇 must be reduced which can be done by 

reducing 𝑁 and 𝑆, and increasing 𝑅 . The value of 𝑁  is reduced if the source program is 

compiled in fewer machine instructions. The value of 𝑆 is reduced if instructions have a 

smaller number of basic steps to perform or if the execution of instructions are overlapped. 

Using a higher-frequency clock increases the value of 𝑅 which means the time required to 

complete a basic execution step is reduced. 
 

1 c) The individual parts of a computer need to be connected in an organized way to increase 

the speed of operation. When a word of data is transferred between units, all its bits are 

transferred in parallel that is bits are transferred simultaneously over many wires or lines, one 

bit per line. A group of lines that serves as a connecting path for several devices is called a 

bus. The simplest way to inter connect functional units is to use a single bus as shown in Fig. 

  

  

 

 

 

 

 

 

Single-bus structure 

 The main virtue of single-bus structure is its low cost and its flexibility for attaching 

peripheral devices. Systems that contain multiple buses achieve more concurrency in 

operation by allowing two or more transfers to be carried out at the same time. This leads to 

better performance but at increased cost. A common approach is to include buffer registers 

with the devices to hold the information during transfers.  
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2 a) Three systems are used for representing such numbers: 

 Sign-and-magnitude 

 1’s-complement 

 2’s-complement 

       In the sign-and-magnitude system, negative values are represented by changing the 

most significant bit from 0 to 1 in the B vector as shown in Fig 1.7. In 1’s complement 

representation, negative values are obtained by complementing each bit of the corresponding 

positive number. Finally in 2’s-complement system, forming 2’s complement of a number is 

done by subtracting that numbers from2𝑛 . Hence the 2’s complement of a number is obtained 

by adding 1 to the 1’s complement of that number. The 2’s complement system yields the 

most effective way to carry out addition and subtraction operations. 

           B                                                   Values represented  

                           Sign and 

   𝑏3𝑏2𝑏1𝑏0        magnitude                   1’s complement                    2’s complement 

    0 1  1  1               + 7                                     + 7                                                   + 7 

 0 1  1  0               + 6                                      + 6                                                   + 6       

   0 1  0  1                + 5                                      + 5                                                  + 5    

   0 1  0  0                + 4                                      + 4                                                  + 4 

   0 0  1  1                + 3                                      + 3                                                  + 3 

   0 0  1  0                + 2                                      + 2                                                  + 2 

   0 0  0  1                + 1                                      + 1                                                  + 1 

   0 0  0  0                + 0                                      + 0                                                  + 0   

   1 0  0  0                − 0                                      − 7                                                  − 8  

   1 0  0  1                − 1                                      − 6                                                  − 7 

   1 0  1  0                − 2                                      − 5                                                  − 6   

   1 0  1  1                − 3                                      − 4                                                  − 5   

   1 1  0  0                − 4                                      − 3                                                  − 4   

   1 1  0  1                − 5                                      − 2                                                  − 3   

   1 1  1  0                − 6                                      − 1                                                  − 2   

   1 1  1  1                − 7                                      − 0                                                  − 1 

 

2 b) A computer must be able to represent numbers and operate on them in such a way that 

the position of the binary point is variable and automatically adjusted as the computation 

proceeds. In such a case binary point is said to float and the numbers are called floating-point 

numbers. For example, in the familiar decimal scientific notation, the numbers can be written 

as 6.0247 × 1023, 6.6254 × 10−27 . The numbers are said to be given to five significant 

digits. When the decimal point is placed to the right of the first (nonzero) significant digit, the 

number is said to be normalized. The floating-point number is represented by its sign, string 



of significant digits, commonly called mantissa, and an exponent to an implied base for the 

scale factor.     

 The standard for representing floating-point numbers in 32 bits is specified by IEEE 

is given in Fig. A 24 bit mantissa can represent a 7-digit decimal number and an 8 bit 

exponent. The sign of the number is given in the first bit, followed by the representation for 

the exponent (to the base 2) of the scale factor. The signed exponent component 𝐸 is stored in 

the form of unsigned integer  𝐸′ = 𝐸 + 127. This is called excess-127 format. 

 
 

2 c) The name big-endian is used when the lower byte addresses are used for the most significant 

bytes (the leftmost bytes) of the word. The little-endian is used for the opposite ordering, when the 

lower byte addresses for the less significant bytes (the rightmost bytes) of the word. In both cases, 

byte addresses 0,4,8, …, are taken as the address for the successive words in the memory and are the 

addresses used when specifying the memory read and write operation for the words. The two ways 

that the byte addresses can be used across the words as shown in Fig 

 

The word locations have aligned addresses where the word begins at a byte address that is a 

multiple of number of bytes in a word. If the word length is 16 (2 bytes), aligned words 

begins at byte addresses 0,2,4 …. 

 

 

3a) The different ways in which the location of an operand is specified in an instruction is 

known as addressing modes. 



 

3b) statement does not denote the instruction that will be executed when the object program is 

run. It informs the assembler that the name SUM  should be replaced by the value 200 

wherever it appears in the program. Such statements are assembler directives  (or commands) 

are used by the assembler when it translates the source program in to a object program.  

ORIGIN is a directive that tells the assembler program where in the memory to place the 

data block. 

DATAWORD directive is used to inform the assembler to place the data in the address. 

RESERVE directive declares a memory block and does not cause any data to be loaded in 

these locations.   

ORIGIN directive specifies that the instructions of an object program are to be loaded in the 

memory starting at an address.  

END is directive which indicates the end of the source program text. The END directive 

includes the label START, which is the address of the location at which execution of the 

program is to begin. 

RETURN is an assembler directive that identifies the point at which the execution of the 

program should be terminated. 

3c)  assembly language requires statements in a source program to be written in the form 

Label   Operation   Operand(s)   Comment 

The assembler program replaces all the symbols denoting operations and addressing modes 

with the binary codes used in the machine instructions and replaces all names and labels with 

their actual values. The assembler assigns addresses to instructions and data blocks, starting 

at addresses given in the ORIGIN assembler directives. It also determines the value that 

replaces the names. The value of the name is specified by EQU directive.  In some cases, the 

assembler does not directly replace a name representing an address with the actual value of 

the address. This is done in branch instruction. The assembler computes the branch offset, 

which is the distance to the target and puts in to the machine instruction.  



 The two-pass assembler has two phases. In the first pass, the assembler scans through 

the source program and keeps track of the numerical value that corresponds to these names in 

symbol table. The assembler then goes through the source program a second time and 

substitutes the values for all the names from the symbol table. Assembler stores the object the 

object program on a magnetic disk. Executing the loader performs a sequence of input 

operations needed to transfer machine language program from a disk into a specified place in 

the memory. Debugger program is used to find the programming errors. This program 

enables the programmer to stop execution of the object program at some points of interest 

and to examine the contents of various processor registers and memory locations.     

 

 

 

4a) The problem of moving a character code from the keyboard to the processor. Striking a 

key store the corresponding character code in an 8-bit buffer register associated with the 

keyboard. Let us call this register DATAIN as shown in Fig 2.3. To inform the processor that 

a valid character is in DATAIN, a status control flag, SIN, is set to 1. A program monitor 

SIN, and when SIN is set to 1, the processor reads the contents of DATAIN. When the 

character is transferred to processor, SIN is automatically cleared to 0. If the second character 

is entered at the keyboard, SIN is again set to 1 and the process repeats. 
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Fig 2.3: Bus connection for processor, keyboard and display 

 An analogous process takes place when the characters are transferred from the 

processor to display. A buffer register, DATAOUT and a status control register SOUT are 

used for this transfer. When SOUT equals 1, the display is ready to receive a character. Under 

program control, the processor monitors SOUT and when SOUT is set to 1, the processor 

transfers a character code to DATAOUT. The transfer of character to DATAOUT clears 
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SOUT to 0, when the display is ready to receive a second character; SOUT is set again to 1. 

The buffer registers DATAIN and DATAOUT and the status flags SIN and SOUT are part of 

circuitry known as device interface.   The processor can monitor the keyboard status flag SIN 

and transfer a character from DATAIN to register R! By the following sequence of 

operations: 

READWAIT    Branch to READWAIT if SIN=0  

                Input from DATAIN to R1 

 The first instruction tests the status flag and the second performs the branch. The 

processor monitors the status flag by executing a short wait loop and proceeds to transfer the 

input data when SIN is set to 1 as a result of key being struck. The input operation resets SIN 

to 0. The sequence of operations are used for transferring the output to display are 

WRITEWAIT    Branch to WRITEWAIT if SOUT=0  

                   Output from R1 to DATAOUT 

 

4b) It is often necessary to perform a particular subtask many times on different data values. 

Such subtask is called subroutine. When a program branches to a subroutine we call that it is 

calling a subroutine. The instruction that performs this branch operation is called a Call 

instruction. The subroutine is said to return to program that called it by executing a Return 

instruction. The location where the calling program resumes execution is the location pointed 

by the updated PC while the Call instruction being executed. Hence the contents of the PC 

must be saved by the Call instruction to enable correct return to the calling program. This 

way in which the computer makes it possible to call and return from subroutines is referred to 

as subroutine linkage method.  

 The Call instruction is a special branch instruction that performs the following 

operations: 

1. Store the contents of PC in the link register. 

2. Branch to the target address specified by the instruction. 

The Return instruction is a special branch instruction that performs the operation: 

             Branch to the address contained in the link register. 

 

Passing parameters through processor registers is straightforward and efficient. Fig shows a 

program for adding a list of numbers using a subroutine with parameters passed through 

registers. 

 

Calling program 
            

            Move      N, R1                          R1 serves as a counter 

            Move     #NUM1, R2                 R2 points to the list 

            Call         LISTADD                  Call subroutine 

            Move       R0, SUM                    Save result 

    

     

   



Subroutine 
 

   LISTADD    Clear             R0                    Initialize sum to 0 

   LOOP           Add             (R2)+, R0         Add entry from list 

                         Decrement    R1 

                         Branch > 0    LOOP 

                         Return                                   Return to calling program  

 

Fig 2.7: Program written as a subroutine; parameters passed through registers 

 

 If many parameters are involved, there may not be enough general purpose registers 

available for passing them to subroutine. Using a stack is highly flexible as stack can handle a 

large number of parameters. The following example illustrates this approach. 

 

Assume that top of the stack is at level 1 below. 

 

        Move        #NUM1,   -(SP)      Push parameters onto stack         

        Move          N, -(SP) 

        Call             LISTADD             Call subroutine   (top of stack at level 2) 

 

        Move         4(SP), SUM            Save result. 

        Add           #8, SP                     Restore top of stack    (top of stack at level 1) 

      

     

     

  

  LISTADD    MoveMultiply       R0-R2, -(SP)       Save registers   (top of stack at level 3) 

 

                        Move                 16(SP), R1                 Initialize counter to n. 

                        Move                 20(SP), R2                 Initialize pointer to the list. 

                        Clear                  R0                              Initialize sum to 0. 

       LOOP      Add                  (R2) +, R0                   Add entry from list 

                        Decrement        R1 

                        Branch>0          LOOP 

                        Move                R0, 20(SP)                Put result on the stack 

                        MoveMultiply   (SP) +, R0-R2           Restore registers 

                        Return                                                Return to calling program 

 
 

calling program pushes the address NUM1 and the value n onto the stack and calls the 

subroutine LISTADD. The call instruction also pushes the return address onto the stack. The 

top of the stack is at level 2. We have single instruction MoveMultiply, to store the contents 

of registers R0 through R2 on the stack. The top of the stack is at level3. The subroutine 

accesses the parameters n and NUM1 from the stack using indexed addressing. At the end of 

computation, the register R0 contains the sum. Before subroutine returns to the calling 

program, the contents of R0 are placed onto the stack, replacing the parameter NUM1 which 

is no longer needed. Then the contents of the three registers used by the subroutine are 

restored from the stack. Now the top item on the stack is the return address at level 2. After 

subroutine returns, the calling program stores the result in location SUM and lowers the top 

of the stack to its original level by incrementing the stack pointer by 8.  



5a) A simple arrangement to connect I/O devices to a computer is to use single bus 

arrangement as shown in Fig1. The bus enables the devices connected to it to exchange 

information. It consists of three set of lines to carry address, data and control signals. Each 

I/O device is assigned unique set of addresses. 

 With the memory mapped I/O any machine instruction that can access memory can be 

used to transfer data to or from an I/O device. 

Move    DATAIN, R0 

 Reads data from the DATAIN and stores into processor register R0. Similarly  

Move    R0, DATAOUT 

 Sends the contents of register R0 to location DATAOUT which is the output data 

buffer of a display unit or a printer. 

 

  

 

 

 

 

 

 

 

                                    

 

 

 

Fig  illustrates the hardware required to connect the I/O device to the bus. The address 

decoder enables the device to recognize its address when its address appears on the address 

lines. The data register holds the data being transferred to or from the processor. The status 

register contains the information relevant to the operation of I/O device. Both status and data 

registers are connected to the data bus and assigned unique addresses.   The address decoder, 

data & status registers and the control circuitry required to coordinate I/O transfers 

constitutes the device interface circuit. 
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I/O interface of an input device 

          

5b)         Interrupt Hardware:  I/O device requests an interrupts by activating a bus line called 

interrupt request.  A single interrupt may be used to serve ‘n’ devices. 
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Fig 5: Circuit for common interrupt request line 

          To request an interrupt device closes its associated switch. Thus if all the interrupt 

request signals INTR1 to INTRn are inactive, the voltage on the interrupt request line is Vdd. 

This is the inactive state of the line. When the device requests the interrupt by closing its 

switch, the voltage line drops to zero causing the interrupt request line INTR received by the 

processor to go to 1. The value of INTR is the logical OR of the requests from individual 

devices, that is 

INTR=INTR1 + .  .   .  .+ INTRn 

       R is the pull up register because it pulls line voltage up to high voltage when the switches 

are open.  

Interrupt Nesting:  I/O devices should be organized in a priority structure. An interrupt 

request from a high priority should be accepted while the processor is serving another request 

from the lower priority device. We can assign priority level to the processor that can be 

changed under program control. The priority level of the processor is the priority of the 

program that is currently being executed. The processor accepts interrupts from devices that 

have priorities higher than its own. The processor is in supervisory mode when it is executing 

the OS routines. It switches to User mode before beginning to execute application programs. 

The privileged instructions can be executed only while the processor is running in the 

supervisory mode. A multiple priority scheme can be implemented by using separate 

interrupt request and interrupt acknowledge lines from each device. 

 

 Implementation of interrupt priority using individual interrupt request & acknowledge lines 

6a) The other tasks can be performed by the processor while waiting for the I/O device to 

become ready. When the I/O device becomes ready, it sends a hardware signal called 

interrupt to the processor. Using the interrupts waiting periods can be eliminated.           

Consider a task that requires some computations to be performed and the results to be printed 

on a line printer. This is followed by more computations and output and so on. Let the 



program consists of two routines COMPUTE and PRINT. Assume COMPUTES produces a 

set of ‘n’ lines of output to be printed by PRINT routine. 

                             Program 1                                              Program 2     

                       COMPUTE routine                                   PRINT routine 

        1                                                                                                                                                                               

        2     

      

  

         i   

interrupt 

occurs  

here            

     

      M                                         

 

Transfer of control through the use of interrupts 

             It is possible to overlap printing and computation ie to execute COMPUTE routine 

while printing is in progress, a faster overlap speed of execution will result. Whenever printer 

becomes ready, it alerts the processor by sending a interrupt request signal. In response the 

processor interrupts the COMPUTE routine and transfers the control to the PRINT routine. 

This process continues until all ‘n’ lines are printed and PRINT routine ends.   If COMPUTE 

takes longer to generate ‘n’ lines than the time required to print them, then the processor will 

be performing useful computations all the time. Saving registers also increases the delay 

between the time the interrupt request is received and the start of execution of interrupt 

service routine. This delay is called interrupt latency. 

Vectored Interrupts  A device requesting an interrupt can identify itself by sending special code to 

the processor over the bus. The code supplied by the device represents the starting address of the 

interrupt service routine. The code length is 4 to 8 bits. The processor reads this address called the 

interrupt vector and stores it in to the PC. The interrupt vector may also include a new value for a 

processor status register. The interrupted device must wait to put on the bus only when the processor 

is ready to receive it. When the processor is ready to receive the vector interrupt code, it activates the 

interrupt acknowledge line INTA. The I/O device responds by sending its interrupt vector code and 

turning off INTR signal. 



 

DMA transfers are performed by control circuits that are part of I/O interface called DMA controller. 

The DMA controller performs functions that would normally be carried out by processor when 

accessing main memory.      The R/W ̅ bit determine the direction of transfer. When this bit is set to 1 

by a program instruction, the controller performs read operation that is it transfers data from memory 

to I/O device. When transfer is complete, it sets done flag to 1. When IE is1, it causes the controller to 

raise an interrupt after it has completed transferring block of data. Finally IRQ bit is set to 1 when it 

has requested interrupt. Requests from DMA devices are given high priority than processor requests. 

Among different DMA devices high priority is given to high speed peripherals such as disks, high 

speed network interface or graphic display device. 

6b) If several devices share one interrupt request line, some other mechanism is needed. 

When several devices raises interrupt request and 𝐼𝑁𝑇𝑅  line is activated, the processor 

responds by setting the INTA line to 1. The signal is received by device 1. Device 1 passes 

the signal onto device 2 only if it does not require any service. If device 1 has pending 

request for interrupt, it blocks the INTA signal and proceeds to put its identification code on 

to data lines. In daisy chain the device that is electrically closest to the processor has the 

highest priority. 

 

Daisy chain 

        Devices can be organized in groups and each group is connected at a different priority 

level. Within group devices are connected in daisy chain.  

 



7a) The following figure shows such an organization of a 

memory chip consisting of 16 words of 8 bits each, which is usually 

referred to as a 16 x 8 organization. 

 

 
The data input and the data output of each Sense/Write circuit are 

connected to a single bi-directional data line in order to reduce the number of 

pins required. One control line, the R/W (Read/Write) input is used a specify 

the required operation  and  another control line, the CS (Chip Select) input 

is used to select a given chip  in  a  multichip  memory system. This circuit 

requires 14 external connections, and allowing 2  pins  for power supply and 

ground connections,  can be  manufactured in the  form  of  a 16-pin chip. It 

can store 16 x 8 = 128 bits. 

7b) 

 



 

7c)  

 

 



8a)  

Analysis of a large number of typical programs has shown that most 

of their execution time is spent on a few main row lines in which a number 

of instructions are executed repeatedly. These instructions may constitute a 

simple loop, nested loops or few procedure that repeatedly  call each  other.  

The  main observation  is that many instructions in a few localized are as of 

the program are repeatedly  executed and that the remainder of  the program 

is accessed relatively infrequently.  This  phenomenan  is  referred  to  as  

locality of reference. 

If the active segments of a program can be placed in a fast memory, 

then the total execution time can be significantly reduced, such a memory  is  

referred  as  a  cache  memory which is in served between the CPU and the 

main memory as shown in fig.1 

 

 

Two Level memory Hierarchy: We will adopt the terms Primary 

level for the smaller, faster memory and the secondary level for larger, 

slower memory, we will also  allow cache to be a primary level with slower  

semiconductor  memory  as  the  corresponding secondary level. At a 

different point  in  the  hierarchy,  the  same  S.C memory could be the 

primary level with disk as the secondary level. 

 

8b) Virtual memory is the technique of using secondary storage such as disks to enter  the apparent 

size of accessible memory beyond its actual physical size. Virtual memory is implemented by 

employing  a  memory-management  unit  (MMU)  to  translate  every logical address  reference into  

a physical  address  reference as shown in  fig  1. The  MMU is imposed between the CPU and the 

physical  memory  where  it  performs  these translations under the  control of the operating system. 

Each memory reference is sued by   the CPU is translated from the logical address space to the  



physical  address  space.  Mapping tables guide the translation, again under the control of the 

operating system. 

  

 

Virtual memory usually demand paging, which means that a Page is moved from disk into main 

memory only when the processor accesses a word on that page. Virtual memory pages always have a 

place on the disk once they are created, but are copied to    main memory only on a miss or page fault. 

Advantages of Virtual memory:- 

1. Simplified addressing 

2. Cost effective use of memory 

3. Access control 

 

8c) Magnetic Disk system consists o one or more disk mounted on a common spindle. A thin 

magnetic film is deposited on each disk, usually on both sides. 

 The disk are placed in a rotary drive so that the magnetized surfaces move in close proximity 
to read /write heads. Each head consists of magnetic yoke & magnetizing coil. Digital 
information can be stored on the magnetic film by applying the current pulse of suitable 
polarity to the magnetizing coil. Only changes in the magnetic field under the head can be 
sensed during the Read operation. Therefore if the binary states 0 & 1 are represented by two 
opposite states of magnetization, a voltage is induced in the head only at 0-1 and at 1-0 
transition in the bit stream.  A consecutive (long string) of 0‟s & 1‟s are determined by using 
the clock which is mainly used for synchronization. Phase Encoding or Manchester Encoding 
is the technique to combine the clocking information with data. The Manchester Encoding 
describes that how the self-clocking scheme is implemented. 

The Read/Write heads must be maintained at a very small distance from the moving disk 

surfaces in order to achieve high bit densities. When the disk are moving at their steady 

state, the air pressure develops between the disk surfaces & the head & it forces the head 

away from the surface. The flexible spring connection between head and its arm 

mounting permits the head to fly at the desired distance away from the surface. 

 

 



 

 

9a) 

 

Figure shows an organization in which the arithmetic and logic unit (ALU) and all  the registers are 

interconnected through a single common bus, which is internal to the processor. The data and address 

lines of the external memory bus are shown in Figure 7.1 connected to the internal processor bus via 

the memory data register, MDR,  and  the  memory address register, MAR, respectively. Register 

MDR has two inputs  and  two outputs. Data may be loaded into MDR either from the memory bus or 

from the internal processor bus. The data stored  in  MDR  may be  placed  on  either bus. The input 

of MAR  is connected to the internal bus, and its output is connected  to  the  external  bus.  The  

control lines of the memory bus are connected to the instruction decoder and control logic block. This 

unit is responsible for issuing the signals that control the operation of all the   units inside the 

processor and for interacting with the memory bus. The number and use of the processor registers R0 

through  R(n  - 1)  vary considerably  from one processor to another. Registers may be provided for 

general-purpose use by the programmer.  Some may  be dedicated as special-purpose registers, such 

as  index registers  or stack pointers. Three registers, Y, Z, and TEMP in Figure 2, have not been 

mentioned before. These registers are transparent to the  programmer, that is,  the  programmer  need  

not be concerned with them because they are never  referenced  explicitly  by  any instruction. They 

are used by the processor for  temporary  storage  during  execution  of some instructions. These 



registers are never used for storing data generated by one  instruction for later use by another 

instruction.The multiplexer MUX selects either the output of register Y or a constant value 4 to be 

provided as input A of the ALU. The constant 4 is used to increment the contents of the program 

counter. We will refer to the two possible values  of  the  MUX  control  input  Select as Select4 and 

Select Y for selecting the constant 4 or register Y, respectively.As instruction execution progresses, 

data are transferred from  one  register  to  another,  often passing through the ALU to perform some 

arithmetic or logic operation. The  instruction decoder and control logic unit is responsible for 

implementing the actions specified by the instruction loaded in the IR register. The decoder generates 

the control signals needed to select the registers involved and direct the transfer of data. The registers, 

the ALU, and the interconnecting bus are collectively referred to  as  the  data  path. 

9b) Address into MAR; issue Read operation; data into MDR. 

Response time of each memory access varies (cache miss, memory-mapped I/O,…). 

Processor waits until it receives an indication that the requested operation has been completed 

(Memory-Function-Completed, MFC). 

 

 
 

Move (R1), R2 

 MAR ← [R1] 

 Start a Read operation on the memory bus 

 Wait for the MFC response from the memory 

 Load MDR from the memory bus 

 R2 ← [MDR]  

 

10 a) Consider the instruction 

Add (R3), R1 

;which adds the contents of a memory location pointed to by R3 to register R1.  

Executing this instruction requires the following actions: 

1.Fetch the instruction. 

2.Fetch the first operand (the contents of the memory location pointed to by R3). 

3.Perform the addition. 

4 .Load the result into Rl. 

 



 
The listing shown in figure above indicates the  sequence  of  control  steps  required to 

perform these operations for  the  single-bus  architecture  of  Figure 7.2.  

Instruction execution proceeds as follows.  

In step 1, the instruction fetch operation is  initiated by loading the contents of the PC into the  

MAR and sending a  Read  request  to   the memory. The Select signal is set to Select4, 

which causes the  multiplexer  MUX  to select the constant 4.  

This value is added to the operand at input B,  which is the  contents of the PC, and the result 

is stored in register Z. The updated value is moved from register  Z back into the PC during 

step 2, while waiting for the memory to respond.  

In step 3, the word fetched from the memory is loaded into the IR. 

Steps 1 through 3 constitute the instruction fetch phase, which is the same for all instructions. 

The instruction decoding circuit interprets the contents of the IR at the  beginning of step 4. 

This enables the control circuitry to activate the control  signals  for  steps 4 through 7, which 

constitute the execution phase. The contents of register R3 are transferred to the MAR in step 

4, and a memory read operation is initiated. 

Then the contents of Rl are transferred to register Y in step 5, to prepare for the addition 

operation. When the Read operation is completed, the memory  operand  is  available in 

register MDR, and the addition operation is performed in step  6. The contents   of MDR are 

gated to the bus, and thus also to the B input of the ALU, and register Y is selected as the 

second input to the ALU by choosing Select Y.  The sum  is  stored  in register Z, then 

transferred to Rl in step 7. The End signal causes a new instruction fetch cycle to begin by 

returning to step 1. 

 

 



10 b) 

 

 

 

The control signals required inside the processor can be generated using a control  step counter and a 

decoder/ encoder circuit. Now we discuss an alternative scheme, called micro programmed control, in 

which  control  signals are  generated  by a  program  similar to machine language programs. A 

control word (CW) is a word whose individual bits represent the various control signals in Figure 

7.15. Each of the control steps   in the control sequence of an instruction defines a unique combination 

of Is and Os in the CW. The CWs corresponding to the 7 steps of Figure 6 are shown in Figure 15. 

We have assumed that Select Y is represented by Select = 0 and Select4 by Select =  1. A sequence    

of CWs corresponding to the control sequence of a machine  instruction  constitutes  the micro routine 

for that instruction, and the individual control words  in  this  micro  routine  are referred to as 

microinstructions. The micro routines for all instructions in the instruction set  of  a  computer  are 

stored in a special memory called the control store. The control unit  can  generate  the control signals 

for any instruction by sequentially reading the CWs of the corresponding micro  routine from the 

control  store. This suggests  organizing the control  unit as  shown  in Figure 7.16. To read the 

control words sequentially from the control store,  a  micro  program counter (µPC) is used. Every 

time a new instruction is loaded into the IR,  the  output of  the  block labeled "starting address  

generator" is loaded into  the  µPC. The µPC  is then automatically incremented by  the  clock,  

causing  successive  microinstructions  to be read from the control store. Hence, the control  signals 

are delivered to various parts of  the processor in the correct sequence. 
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Figure 7.15 An example of microinstructions for Figure 7.6.

Figure 7.16. Basic organization of a microprogrammed control unit.
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