

1 a) To perform a given task, an appropriate program consisting of a list of instructions is stored in the

memory. Individual instructions are brought from the memory into the processor, which executes the

specified operations. Data to be used as operands are also stored in the memory. Transfers between

memory and processor are started by sending the address of the memory location to be

accessed to the memory unit and issuing the appropriate control signals. The data is

transferred to or from the memory. The memory and processor connection is shown in Fig.

 The Instruction register (IR) holds the instruction that is currently being executed. Its

output is available to control circuits which generate the timing signals that control various

processing elements involved in executing the instruction. The Program Counter (PC) holds

the address of the next instruction to be fetched and executed. During the execution of an

instruction, the contents of the PC are updated to correspond to the address of the next

instruction to be executed. MAR and MDR facilitate communication with the memory.MAR

(Memory Address Register) hold the address of the location to be accessed and MDR

(Memory Data Register) contains data written into or read out of the addressed location.

1 b) The total time required to execute the program is known as elapse time. This is a measure

of performance of entire computer system. The periods during which processor is active is

used to measure the performance of processor. The sum of these periods is referred to as

processor time. The processor time depends on the hardware involved in the execution of

individual machine instructions. This hardware comprises the processor and the memory

which are connected by a bus.

Processor circuits are controlled by a timing signal called clock. The clock defines regular

time intervals called clock cycles. To execute a machine instruction, the processor divides the

action to be performed into a sequence of basic steps, such that each can be completed in one

clock cycle. The length 𝑃 of one clock cycle is an important parameter that affects the

processor performance. Its inverse is the clock rate, 𝑅 = 1/𝑃 which is measured in cycles per

second.

Let 𝑇 be the processor time required to execute a program that has been prepared by some

high level language. The compiler generates machine level object program that corresponds

to source program. Assume that complete execution of the program requires the execution of

𝑁 machine language instructions. Suppose that the average number of basic steps needed to

Figure 1.2. Connections between the processor and the memory.

Processor

Memory

PC

IR

MDR

Control

ALU

R
n 1-

R1

R0

MAR

n general purpose
registers

execute one machine instruction is 𝑆, where each basic step is completed in one clock cycle.

If the clock rate is 𝑅 cycles per second, the program execution time is given by basic

performance equation.

𝑇 =
𝑁 × 𝑆

𝑅

 To achieve high performance, the value of 𝑇 must be reduced which can be done by

reducing 𝑁 and 𝑆, and increasing 𝑅 . The value of 𝑁 is reduced if the source program is

compiled in fewer machine instructions. The value of 𝑆 is reduced if instructions have a

smaller number of basic steps to perform or if the execution of instructions are overlapped.

Using a higher-frequency clock increases the value of 𝑅 which means the time required to

complete a basic execution step is reduced.

1 c) The individual parts of a computer need to be connected in an organized way to increase

the speed of operation. When a word of data is transferred between units, all its bits are

transferred in parallel that is bits are transferred simultaneously over many wires or lines, one

bit per line. A group of lines that serves as a connecting path for several devices is called a

bus. The simplest way to inter connect functional units is to use a single bus as shown in Fig.

Single-bus structure

 The main virtue of single-bus structure is its low cost and its flexibility for attaching

peripheral devices. Systems that contain multiple buses achieve more concurrency in

operation by allowing two or more transfers to be carried out at the same time. This leads to

better performance but at increased cost. A common approach is to include buffer registers

with the devices to hold the information during transfers.

Input

Output

Memory

Processor

2 a) Three systems are used for representing such numbers:

 Sign-and-magnitude

 1’s-complement

 2’s-complement

 In the sign-and-magnitude system, negative values are represented by changing the

most significant bit from 0 to 1 in the B vector as shown in Fig 1.7. In 1’s complement

representation, negative values are obtained by complementing each bit of the corresponding

positive number. Finally in 2’s-complement system, forming 2’s complement of a number is

done by subtracting that numbers from2𝑛 . Hence the 2’s complement of a number is obtained

by adding 1 to the 1’s complement of that number. The 2’s complement system yields the

most effective way to carry out addition and subtraction operations.

 B Values represented

 Sign and

 𝑏3𝑏2𝑏1𝑏0 magnitude 1’s complement 2’s complement

 0 1 1 1 + 7 + 7 + 7

 0 1 1 0 + 6 + 6 + 6

 0 1 0 1 + 5 + 5 + 5

 0 1 0 0 + 4 + 4 + 4

 0 0 1 1 + 3 + 3 + 3

 0 0 1 0 + 2 + 2 + 2

 0 0 0 1 + 1 + 1 + 1

 0 0 0 0 + 0 + 0 + 0

 1 0 0 0 − 0 − 7 − 8

 1 0 0 1 − 1 − 6 − 7

 1 0 1 0 − 2 − 5 − 6

 1 0 1 1 − 3 − 4 − 5

 1 1 0 0 − 4 − 3 − 4

 1 1 0 1 − 5 − 2 − 3

 1 1 1 0 − 6 − 1 − 2

 1 1 1 1 − 7 − 0 − 1

2 b) A computer must be able to represent numbers and operate on them in such a way that

the position of the binary point is variable and automatically adjusted as the computation

proceeds. In such a case binary point is said to float and the numbers are called floating-point

numbers. For example, in the familiar decimal scientific notation, the numbers can be written

as 6.0247 × 1023, 6.6254 × 10−27 . The numbers are said to be given to five significant

digits. When the decimal point is placed to the right of the first (nonzero) significant digit, the

number is said to be normalized. The floating-point number is represented by its sign, string

of significant digits, commonly called mantissa, and an exponent to an implied base for the

scale factor.

 The standard for representing floating-point numbers in 32 bits is specified by IEEE

is given in Fig. A 24 bit mantissa can represent a 7-digit decimal number and an 8 bit

exponent. The sign of the number is given in the first bit, followed by the representation for

the exponent (to the base 2) of the scale factor. The signed exponent component 𝐸 is stored in

the form of unsigned integer 𝐸′ = 𝐸 + 127. This is called excess-127 format.

2 c) The name big-endian is used when the lower byte addresses are used for the most significant

bytes (the leftmost bytes) of the word. The little-endian is used for the opposite ordering, when the

lower byte addresses for the less significant bytes (the rightmost bytes) of the word. In both cases,

byte addresses 0,4,8, …, are taken as the address for the successive words in the memory and are the

addresses used when specifying the memory read and write operation for the words. The two ways

that the byte addresses can be used across the words as shown in Fig

The word locations have aligned addresses where the word begins at a byte address that is a

multiple of number of bytes in a word. If the word length is 16 (2 bytes), aligned words

begins at byte addresses 0,2,4 ….

3a) The different ways in which the location of an operand is specified in an instruction is

known as addressing modes.

3b) statement does not denote the instruction that will be executed when the object program is

run. It informs the assembler that the name SUM should be replaced by the value 200

wherever it appears in the program. Such statements are assembler directives (or commands)

are used by the assembler when it translates the source program in to a object program.

ORIGIN is a directive that tells the assembler program where in the memory to place the

data block.

DATAWORD directive is used to inform the assembler to place the data in the address.

RESERVE directive declares a memory block and does not cause any data to be loaded in

these locations.

ORIGIN directive specifies that the instructions of an object program are to be loaded in the

memory starting at an address.

END is directive which indicates the end of the source program text. The END directive

includes the label START, which is the address of the location at which execution of the

program is to begin.

RETURN is an assembler directive that identifies the point at which the execution of the

program should be terminated.

3c) assembly language requires statements in a source program to be written in the form

Label Operation Operand(s) Comment

The assembler program replaces all the symbols denoting operations and addressing modes

with the binary codes used in the machine instructions and replaces all names and labels with

their actual values. The assembler assigns addresses to instructions and data blocks, starting

at addresses given in the ORIGIN assembler directives. It also determines the value that

replaces the names. The value of the name is specified by EQU directive. In some cases, the

assembler does not directly replace a name representing an address with the actual value of

the address. This is done in branch instruction. The assembler computes the branch offset,

which is the distance to the target and puts in to the machine instruction.

 The two-pass assembler has two phases. In the first pass, the assembler scans through

the source program and keeps track of the numerical value that corresponds to these names in

symbol table. The assembler then goes through the source program a second time and

substitutes the values for all the names from the symbol table. Assembler stores the object the

object program on a magnetic disk. Executing the loader performs a sequence of input

operations needed to transfer machine language program from a disk into a specified place in

the memory. Debugger program is used to find the programming errors. This program

enables the programmer to stop execution of the object program at some points of interest

and to examine the contents of various processor registers and memory locations.

4a) The problem of moving a character code from the keyboard to the processor. Striking a

key store the corresponding character code in an 8-bit buffer register associated with the

keyboard. Let us call this register DATAIN as shown in Fig 2.3. To inform the processor that

a valid character is in DATAIN, a status control flag, SIN, is set to 1. A program monitor

SIN, and when SIN is set to 1, the processor reads the contents of DATAIN. When the

character is transferred to processor, SIN is automatically cleared to 0. If the second character

is entered at the keyboard, SIN is again set to 1 and the process repeats.

Bus

Fig 2.3: Bus connection for processor, keyboard and display

 An analogous process takes place when the characters are transferred from the

processor to display. A buffer register, DATAOUT and a status control register SOUT are

used for this transfer. When SOUT equals 1, the display is ready to receive a character. Under

program control, the processor monitors SOUT and when SOUT is set to 1, the processor

transfers a character code to DATAOUT. The transfer of character to DATAOUT clears

Processor

 SIN

 Keyboard

 DATAIN

 SOUT

 Display

DATAOUT

SOUT to 0, when the display is ready to receive a second character; SOUT is set again to 1.

The buffer registers DATAIN and DATAOUT and the status flags SIN and SOUT are part of

circuitry known as device interface. The processor can monitor the keyboard status flag SIN

and transfer a character from DATAIN to register R! By the following sequence of

operations:

READWAIT Branch to READWAIT if SIN=0

 Input from DATAIN to R1

 The first instruction tests the status flag and the second performs the branch. The

processor monitors the status flag by executing a short wait loop and proceeds to transfer the

input data when SIN is set to 1 as a result of key being struck. The input operation resets SIN

to 0. The sequence of operations are used for transferring the output to display are

WRITEWAIT Branch to WRITEWAIT if SOUT=0

 Output from R1 to DATAOUT

4b) It is often necessary to perform a particular subtask many times on different data values.

Such subtask is called subroutine. When a program branches to a subroutine we call that it is

calling a subroutine. The instruction that performs this branch operation is called a Call

instruction. The subroutine is said to return to program that called it by executing a Return

instruction. The location where the calling program resumes execution is the location pointed

by the updated PC while the Call instruction being executed. Hence the contents of the PC

must be saved by the Call instruction to enable correct return to the calling program. This

way in which the computer makes it possible to call and return from subroutines is referred to

as subroutine linkage method.

 The Call instruction is a special branch instruction that performs the following

operations:

1. Store the contents of PC in the link register.

2. Branch to the target address specified by the instruction.

The Return instruction is a special branch instruction that performs the operation:

 Branch to the address contained in the link register.

Passing parameters through processor registers is straightforward and efficient. Fig shows a

program for adding a list of numbers using a subroutine with parameters passed through

registers.

Calling program

 Move N, R1 R1 serves as a counter

 Move #NUM1, R2 R2 points to the list

 Call LISTADD Call subroutine

 Move R0, SUM Save result







Subroutine

 LISTADD Clear R0 Initialize sum to 0

 LOOP Add (R2)+, R0 Add entry from list

 Decrement R1

 Branch > 0 LOOP

 Return Return to calling program

Fig 2.7: Program written as a subroutine; parameters passed through registers

 If many parameters are involved, there may not be enough general purpose registers

available for passing them to subroutine. Using a stack is highly flexible as stack can handle a

large number of parameters. The following example illustrates this approach.

Assume that top of the stack is at level 1 below.

 Move #NUM1, -(SP) Push parameters onto stack

 Move N, -(SP)

 Call LISTADD Call subroutine (top of stack at level 2)

 Move 4(SP), SUM Save result.

 Add #8, SP Restore top of stack (top of stack at level 1)







 LISTADD MoveMultiply R0-R2, -(SP) Save registers (top of stack at level 3)

 Move 16(SP), R1 Initialize counter to n.

 Move 20(SP), R2 Initialize pointer to the list.

 Clear R0 Initialize sum to 0.

 LOOP Add (R2) +, R0 Add entry from list

 Decrement R1

 Branch>0 LOOP

 Move R0, 20(SP) Put result on the stack

 MoveMultiply (SP) +, R0-R2 Restore registers

 Return Return to calling program

calling program pushes the address NUM1 and the value n onto the stack and calls the

subroutine LISTADD. The call instruction also pushes the return address onto the stack. The

top of the stack is at level 2. We have single instruction MoveMultiply, to store the contents

of registers R0 through R2 on the stack. The top of the stack is at level3. The subroutine

accesses the parameters n and NUM1 from the stack using indexed addressing. At the end of

computation, the register R0 contains the sum. Before subroutine returns to the calling

program, the contents of R0 are placed onto the stack, replacing the parameter NUM1 which

is no longer needed. Then the contents of the three registers used by the subroutine are

restored from the stack. Now the top item on the stack is the return address at level 2. After

subroutine returns, the calling program stores the result in location SUM and lowers the top

of the stack to its original level by incrementing the stack pointer by 8.

5a) A simple arrangement to connect I/O devices to a computer is to use single bus

arrangement as shown in Fig1. The bus enables the devices connected to it to exchange

information. It consists of three set of lines to carry address, data and control signals. Each

I/O device is assigned unique set of addresses.

 With the memory mapped I/O any machine instruction that can access memory can be

used to transfer data to or from an I/O device.

Move DATAIN, R0

 Reads data from the DATAIN and stores into processor register R0. Similarly

Move R0, DATAOUT

 Sends the contents of register R0 to location DATAOUT which is the output data

buffer of a display unit or a printer.

Fig illustrates the hardware required to connect the I/O device to the bus. The address

decoder enables the device to recognize its address when its address appears on the address

lines. The data register holds the data being transferred to or from the processor. The status

register contains the information relevant to the operation of I/O device. Both status and data

registers are connected to the data bus and assigned unique addresses. The address decoder,

data & status registers and the control circuitry required to coordinate I/O transfers

constitutes the device interface circuit.

Processor

Memory

I/O Device 1

I/O Device n

 Address lines

Bus Data lines

 Control lines

I/O interface of an input device

5b) Interrupt Hardware: I/O device requests an interrupts by activating a bus line called

interrupt request. A single interrupt may be used to serve ‘n’ devices.

Address

Decoder

Control Circuits Data & Status

Registers

Input Device

Fig 5: Circuit for common interrupt request line

 To request an interrupt device closes its associated switch. Thus if all the interrupt

request signals INTR1 to INTRn are inactive, the voltage on the interrupt request line is Vdd.

This is the inactive state of the line. When the device requests the interrupt by closing its

switch, the voltage line drops to zero causing the interrupt request line INTR received by the

processor to go to 1. The value of INTR is the logical OR of the requests from individual

devices, that is

INTR=INTR1 ++ INTRn

 R is the pull up register because it pulls line voltage up to high voltage when the switches

are open.

Interrupt Nesting: I/O devices should be organized in a priority structure. An interrupt

request from a high priority should be accepted while the processor is serving another request

from the lower priority device. We can assign priority level to the processor that can be

changed under program control. The priority level of the processor is the priority of the

program that is currently being executed. The processor accepts interrupts from devices that

have priorities higher than its own. The processor is in supervisory mode when it is executing

the OS routines. It switches to User mode before beginning to execute application programs.

The privileged instructions can be executed only while the processor is running in the

supervisory mode. A multiple priority scheme can be implemented by using separate

interrupt request and interrupt acknowledge lines from each device.

 Implementation of interrupt priority using individual interrupt request & acknowledge lines

6a) The other tasks can be performed by the processor while waiting for the I/O device to

become ready. When the I/O device becomes ready, it sends a hardware signal called

interrupt to the processor. Using the interrupts waiting periods can be eliminated.

Consider a task that requires some computations to be performed and the results to be printed

on a line printer. This is followed by more computations and output and so on. Let the

program consists of two routines COMPUTE and PRINT. Assume COMPUTES produces a

set of ‘n’ lines of output to be printed by PRINT routine.

 Program 1 Program 2

 COMPUTE routine PRINT routine

 1

 2





 i

interrupt

occurs

here

 M

Transfer of control through the use of interrupts

 It is possible to overlap printing and computation ie to execute COMPUTE routine

while printing is in progress, a faster overlap speed of execution will result. Whenever printer

becomes ready, it alerts the processor by sending a interrupt request signal. In response the

processor interrupts the COMPUTE routine and transfers the control to the PRINT routine.

This process continues until all ‘n’ lines are printed and PRINT routine ends. If COMPUTE

takes longer to generate ‘n’ lines than the time required to print them, then the processor will

be performing useful computations all the time. Saving registers also increases the delay

between the time the interrupt request is received and the start of execution of interrupt

service routine. This delay is called interrupt latency.

Vectored Interrupts A device requesting an interrupt can identify itself by sending special code to

the processor over the bus. The code supplied by the device represents the starting address of the

interrupt service routine. The code length is 4 to 8 bits. The processor reads this address called the

interrupt vector and stores it in to the PC. The interrupt vector may also include a new value for a

processor status register. The interrupted device must wait to put on the bus only when the processor

is ready to receive it. When the processor is ready to receive the vector interrupt code, it activates the

interrupt acknowledge line INTA. The I/O device responds by sending its interrupt vector code and

turning off INTR signal.

DMA transfers are performed by control circuits that are part of I/O interface called DMA controller.

The DMA controller performs functions that would normally be carried out by processor when

accessing main memory. The R/W ̅ bit determine the direction of transfer. When this bit is set to 1

by a program instruction, the controller performs read operation that is it transfers data from memory

to I/O device. When transfer is complete, it sets done flag to 1. When IE is1, it causes the controller to

raise an interrupt after it has completed transferring block of data. Finally IRQ bit is set to 1 when it

has requested interrupt. Requests from DMA devices are given high priority than processor requests.

Among different DMA devices high priority is given to high speed peripherals such as disks, high

speed network interface or graphic display device.

6b) If several devices share one interrupt request line, some other mechanism is needed.

When several devices raises interrupt request and 𝐼𝑁𝑇𝑅 line is activated, the processor

responds by setting the INTA line to 1. The signal is received by device 1. Device 1 passes

the signal onto device 2 only if it does not require any service. If device 1 has pending

request for interrupt, it blocks the INTA signal and proceeds to put its identification code on

to data lines. In daisy chain the device that is electrically closest to the processor has the

highest priority.

Daisy chain

 Devices can be organized in groups and each group is connected at a different priority

level. Within group devices are connected in daisy chain.

7a) The following figure shows such an organization of a

memory chip consisting of 16 words of 8 bits each, which is usually

referred to as a 16 x 8 organization.

The data input and the data output of each Sense/Write circuit are

connected to a single bi-directional data line in order to reduce the number of

pins required. One control line, the R/W (Read/Write) input is used a specify

the required operation and another control line, the CS (Chip Select) input

is used to select a given chip in a multichip memory system. This circuit

requires 14 external connections, and allowing 2 pins for power supply and

ground connections, can be manufactured in the form of a 16-pin chip. It

can store 16 x 8 = 128 bits.

7b)

7c)

8a)

Analysis of a large number of typical programs has shown that most

of their execution time is spent on a few main row lines in which a number

of instructions are executed repeatedly. These instructions may constitute a

simple loop, nested loops or few procedure that repeatedly call each other.

The main observation is that many instructions in a few localized are as of

the program are repeatedly executed and that the remainder of the program

is accessed relatively infrequently. This phenomenan is referred to as

locality of reference.

If the active segments of a program can be placed in a fast memory,

then the total execution time can be significantly reduced, such a memory is

referred as a cache memory which is in served between the CPU and the

main memory as shown in fig.1

Two Level memory Hierarchy: We will adopt the terms Primary

level for the smaller, faster memory and the secondary level for larger,

slower memory, we will also allow cache to be a primary level with slower

semiconductor memory as the corresponding secondary level. At a

different point in the hierarchy, the same S.C memory could be the

primary level with disk as the secondary level.

8b) Virtual memory is the technique of using secondary storage such as disks to enter the apparent

size of accessible memory beyond its actual physical size. Virtual memory is implemented by

employing a memory-management unit (MMU) to translate every logical address reference into

a physical address reference as shown in fig 1. The MMU is imposed between the CPU and the

physical memory where it performs these translations under the control of the operating system.

Each memory reference is sued by the CPU is translated from the logical address space to the

physical address space. Mapping tables guide the translation, again under the control of the

operating system.

Virtual memory usually demand paging, which means that a Page is moved from disk into main

memory only when the processor accesses a word on that page. Virtual memory pages always have a

place on the disk once they are created, but are copied to main memory only on a miss or page fault.

Advantages of Virtual memory:-

1. Simplified addressing

2. Cost effective use of memory

3. Access control

8c) Magnetic Disk system consists o one or more disk mounted on a common spindle. A thin

magnetic film is deposited on each disk, usually on both sides.

 The disk are placed in a rotary drive so that the magnetized surfaces move in close proximity
to read /write heads. Each head consists of magnetic yoke & magnetizing coil. Digital
information can be stored on the magnetic film by applying the current pulse of suitable
polarity to the magnetizing coil. Only changes in the magnetic field under the head can be
sensed during the Read operation. Therefore if the binary states 0 & 1 are represented by two
opposite states of magnetization, a voltage is induced in the head only at 0-1 and at 1-0
transition in the bit stream. A consecutive (long string) of 0‟s & 1‟s are determined by using
the clock which is mainly used for synchronization. Phase Encoding or Manchester Encoding
is the technique to combine the clocking information with data. The Manchester Encoding
describes that how the self-clocking scheme is implemented.

The Read/Write heads must be maintained at a very small distance from the moving disk

surfaces in order to achieve high bit densities. When the disk are moving at their steady

state, the air pressure develops between the disk surfaces & the head & it forces the head

away from the surface. The flexible spring connection between head and its arm

mounting permits the head to fly at the desired distance away from the surface.

9a)

Figure shows an organization in which the arithmetic and logic unit (ALU) and all the registers are

interconnected through a single common bus, which is internal to the processor. The data and address

lines of the external memory bus are shown in Figure 7.1 connected to the internal processor bus via

the memory data register, MDR, and the memory address register, MAR, respectively. Register

MDR has two inputs and two outputs. Data may be loaded into MDR either from the memory bus or

from the internal processor bus. The data stored in MDR may be placed on either bus. The input

of MAR is connected to the internal bus, and its output is connected to the external bus. The

control lines of the memory bus are connected to the instruction decoder and control logic block. This

unit is responsible for issuing the signals that control the operation of all the units inside the

processor and for interacting with the memory bus. The number and use of the processor registers R0

through R(n - 1) vary considerably from one processor to another. Registers may be provided for

general-purpose use by the programmer. Some may be dedicated as special-purpose registers, such

as index registers or stack pointers. Three registers, Y, Z, and TEMP in Figure 2, have not been

mentioned before. These registers are transparent to the programmer, that is, the programmer need

not be concerned with them because they are never referenced explicitly by any instruction. They

are used by the processor for temporary storage during execution of some instructions. These

registers are never used for storing data generated by one instruction for later use by another

instruction.The multiplexer MUX selects either the output of register Y or a constant value 4 to be

provided as input A of the ALU. The constant 4 is used to increment the contents of the program

counter. We will refer to the two possible values of the MUX control input Select as Select4 and

Select Y for selecting the constant 4 or register Y, respectively.As instruction execution progresses,

data are transferred from one register to another, often passing through the ALU to perform some

arithmetic or logic operation. The instruction decoder and control logic unit is responsible for

implementing the actions specified by the instruction loaded in the IR register. The decoder generates

the control signals needed to select the registers involved and direct the transfer of data. The registers,

the ALU, and the interconnecting bus are collectively referred to as the data path.

9b) Address into MAR; issue Read operation; data into MDR.

Response time of each memory access varies (cache miss, memory-mapped I/O,…).

Processor waits until it receives an indication that the requested operation has been completed

(Memory-Function-Completed, MFC).

Move (R1), R2

 MAR ← [R1]

 Start a Read operation on the memory bus

 Wait for the MFC response from the memory

 Load MDR from the memory bus

 R2 ← [MDR]

10 a) Consider the instruction

Add (R3), R1

;which adds the contents of a memory location pointed to by R3 to register R1.

Executing this instruction requires the following actions:

1.Fetch the instruction.

2.Fetch the first operand (the contents of the memory location pointed to by R3).

3.Perform the addition.

4 .Load the result into Rl.

The listing shown in figure above indicates the sequence of control steps required to

perform these operations for the single-bus architecture of Figure 7.2.

Instruction execution proceeds as follows.

In step 1, the instruction fetch operation is initiated by loading the contents of the PC into the

MAR and sending a Read request to the memory. The Select signal is set to Select4,

which causes the multiplexer MUX to select the constant 4.

This value is added to the operand at input B, which is the contents of the PC, and the result

is stored in register Z. The updated value is moved from register Z back into the PC during

step 2, while waiting for the memory to respond.

In step 3, the word fetched from the memory is loaded into the IR.

Steps 1 through 3 constitute the instruction fetch phase, which is the same for all instructions.

The instruction decoding circuit interprets the contents of the IR at the beginning of step 4.

This enables the control circuitry to activate the control signals for steps 4 through 7, which

constitute the execution phase. The contents of register R3 are transferred to the MAR in step

4, and a memory read operation is initiated.

Then the contents of Rl are transferred to register Y in step 5, to prepare for the addition

operation. When the Read operation is completed, the memory operand is available in

register MDR, and the addition operation is performed in step 6. The contents of MDR are

gated to the bus, and thus also to the B input of the ALU, and register Y is selected as the

second input to the ALU by choosing Select Y. The sum is stored in register Z, then

transferred to Rl in step 7. The End signal causes a new instruction fetch cycle to begin by

returning to step 1.

10 b)

The control signals required inside the processor can be generated using a control step counter and a

decoder/ encoder circuit. Now we discuss an alternative scheme, called micro programmed control, in

which control signals are generated by a program similar to machine language programs. A

control word (CW) is a word whose individual bits represent the various control signals in Figure

7.15. Each of the control steps in the control sequence of an instruction defines a unique combination

of Is and Os in the CW. The CWs corresponding to the 7 steps of Figure 6 are shown in Figure 15.

We have assumed that Select Y is represented by Select = 0 and Select4 by Select = 1. A sequence

of CWs corresponding to the control sequence of a machine instruction constitutes the micro routine

for that instruction, and the individual control words in this micro routine are referred to as

microinstructions. The micro routines for all instructions in the instruction set of a computer are

stored in a special memory called the control store. The control unit can generate the control signals

for any instruction by sequentially reading the CWs of the corresponding micro routine from the

control store. This suggests organizing the control unit as shown in Figure 7.16. To read the

control words sequentially from the control store, a micro program counter (µPC) is used. Every

time a new instruction is loaded into the IR, the output of the block labeled "starting address

generator" is loaded into the µPC. The µPC is then automatically incremented by the clock,

causing successive microinstructions to be read from the control store. Hence, the control signals

are delivered to various parts of the processor in the correct sequence.

P
C i

n

P
C o

ut

M
A

R
in

R
ea

d

M
D

R o
ut

IR
in

Y
in

S
el

ec
t

A
dd Z i
n

Z
ou

t

R
1 ou

t

R
1 i

n

R
3 o

ut

W
M

F
C

E
nd

0

1

0

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

1

0

0

1

0

0

0

1

0

0

1

0

0

0

0

0

1

0

0

1

0

0

0

1

0

0

0

0

0

1

0

0

1

0

0

1

0

0

0

0

0

0

1

0

0

0

0

1

0

1

0

0

0

0

1

0

0

1

0

0

0

0

1

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

1

0

0

0

0

1

0

0

1

0

0

Micro -
instruction

1

2

3

4

5

6

7

Figure 7.15 An example of microinstructions for Figure 7.6.

Figure 7.16. Basic organization of a microprogrammed control unit.

store
Control

generator

Starting
address

CW

Clock PC

IR

