USN											* CAR INSTITUTE OF TECL	,	
			Inte	rnal	Ass	sessi	ment	Test	4 –Feb. 202	22			_
Sub:									Sub Code:	18ME71/17ME73/ 15ME73	Branch:	ME	
Date:	01.02.22	Duration:	90 min's	s	M	ax M	arks:	50	Sem/Sec:	VII/A&B	1	OB	E
			Answe	r All	the	Que	stions				MARKS	СО	RB T
1	R(s) ++ Reduce the bl	ock diagrar	$G_1 \rightarrow G_2$ $-H_1 \leftarrow$ and de	l l	− + Q	←	nsfer	func	tion of the	C(s)	[10]	CO2	L3
2	$\begin{array}{c} G \\ R \stackrel{1}{\longrightarrow} \stackrel{1}{\longrightarrow} \end{array}$	2 G	,-H ₁	G ₆		-• (,			6	[10]	CO2	L3

4.	Obtain the expression for peak time and rise time for a second order control system in terms of damping factor and natural frequency.	[10]	СОЗ	L3
5.	A unity feedback system is characterised by open loop transfer function $G(s) = \frac{16}{s(s+2)}$ If the system is subjected to unit step input, determine: i) Undamped natural frequency ii) Damping ratio iii) Peak overshoot iv) Peak time v) Settling time	[10]	CO4	L3

Faculty Signature CCI Signature HOD Signature

Shift take off point of G3 after the block G2.

Fig. 6.3.37 (b)

Fig. 5.3.37 (c)

$$\frac{C(s)}{R(s)} = \frac{\frac{G_1G_4(G_2+G_3)}{(1+G_1G_2H_2)(1+G_4H_1)}}{1+\frac{G_1G_2(G_2+G_3)}{(1+G_1G_2H_2)(1+G_4H_1)}} \qquad \text{R(s)} \qquad \frac{\frac{G_1G_4(G_2+G_3)}{(1+G_1G_2H_2)(1+G_4H_1)}}{\frac{G_1G_4(G_2+G_3)}{(1+G_1G_2H_2)(1+G_4H_1)}} + C(s)$$

Fig. 5.3.37 (d)

$$\frac{C(s)}{R(s)} = \frac{G_{1}G_{4}(G_{2} + G_{3})}{I + G_{1}G_{2}H_{2} + G_{4}H_{1} + G_{1}G_{2}G_{4}H_{1}H_{2} + G_{1}G_{2}G_{4} + G_{1}G_{3}G_{4}}$$

Sol: The number of forward paths are K = 6.

The forward path gains are,

$$T_1 = G_1G_2G_3$$
, $T_2 = G_4G_5G_6$

$$T_3 = G_1G_7G_5$$
, $T_4 = G_4G_8G_3$

$$T_5 = G_4G_8(-H_2)G_7G_6$$
, $T_6 = G_1G_7(-H_1)G_8G_3$

The feedback loop gains are,

$$L_1 = -G_8 H_1$$
 , $L_2 = -G_2 H_2$, $L_3 = +G_9 H_1 G_8 H_2$

The two nontouching loops are L1 L2.

$$L_1 L_2 = + G_2 G_5 H_1 H_2$$

$$\Delta = 1 - [L_1 + L_2 + L_3] + [L_1 L_2] = 1 + G_5H_1 + G_2H_2 - G_7G_8H_1H_2 + G_2G_5H_1H_2$$

For T1, L1 is nontouching.

'n,

$$\Delta_1 = 1 - L_1 = 1 + G_5 H_1$$

For T2, L2 is nontouching.

For T3 to T6 all loops are touching to all forward paths.

$$\Delta_3 = \Delta_4 = \Delta_5 = \Delta_6 = 1$$

$$\therefore \qquad Gain = \frac{\sum T_K \Delta_K}{\Delta} = \frac{T_1 \Delta_1 + T_2 \Delta_2 + T_3 \Delta_3 + T_4 \Delta_4 + T_5 \Delta_5 + T_6 \Delta_6}{\Delta}$$

$$G_{1}G_{2}G_{3} (1+G_{5}H_{1})+G_{4}G_{5}G_{6} (1+G_{2}H_{2})+$$

$$Gain = \frac{G_{1}G_{7}G_{6}+G_{4}G_{8}G_{3}-G_{4}G_{1}G_{7}G_{6}H_{2}-G_{1}G_{3}G_{7}G_{8}H_{1}}{1+G_{5}H_{1}+G_{2}H_{2}-G_{7}G_{8}H_{1}H_{2}+G_{2}G_{5}H_{1}H_{2}}$$

G₁ G₂ G₂
G₂ G₃
G₄ G₆
G₇ G₈
G₈ G₈

... ARS.

$$f(t) = M_1 \frac{d^2 x_1}{dt^2} + K_1 (x_1 - x_2) + B_1 \frac{d(x_1 - x_2)}{dt}$$

$$0 = K_1 (x_2 - x_1) + B_1 \frac{d(x_2 - x_1)}{dt} + M_2 \frac{d^2 x_2}{dt^2} + B_2 \frac{dx_2}{dt} + K_2 x_2$$

i) F-V analogy : Use $F \rightarrow V$, $M \rightarrow L$, $B \rightarrow R$, $K \rightarrow \frac{1}{C}$, $x \rightarrow q$,

$$\frac{dx}{dt} \rightarrow i$$
, $x \rightarrow \int idt$, $\frac{d^2x}{dt^2} \rightarrow \frac{di}{dt}$

$$v(t) = L_1 \frac{di_1}{dt} + \frac{1}{C_1} \int (i_1 - i_2) dt + R_1 (i_1 - i_2)$$

Fig. 4.8.9 (a)

$$0 = R_1(i_2 - i_1) + \frac{1}{C_1} \int (i_2 - i_1) dt + L_2 \frac{di_2}{dt} + R_2 i_2 + \frac{1}{C_2} \int i_2 dt$$

Based on loop basis, F-V network is shown in the Fig. 4.8.9 (b).

ii) F-I analogy : Use
$$F \rightarrow I$$
, $M \rightarrow C$, $B \rightarrow \frac{1}{R}$, $K \rightarrow \frac{1}{L}$, $x \rightarrow \phi$,

$$\frac{dx}{dt} \rightarrow v(t)$$
, $x \rightarrow \int v(t) dt$, $\frac{d^2x}{dt^2} \rightarrow \frac{dv(t)}{dt}$

$$i(t) = C_1 \frac{dv_1(t)}{dt} + \frac{1}{L_1} \int (v_1 - v_2) dt + \frac{1}{R_1} (v_1 - v_2)$$

$$0 = \frac{1}{L_1} \int (v_2 - v_1) dt + \frac{1}{R_1} (v_2 - v_1) + C_2 \frac{dv_2}{dt} + \frac{1}{R_2} v_2 + \frac{1}{L_2} \int v_2 dt$$

Fig. 4.8.9 (b) F-V analogy

Derivation of Peak Time Tp

Transient response of second order underdamped system is given by,

$$c(t) = 1 - \frac{e^{-\xi \, \omega_{\, n} \, t'}}{\sqrt{1 - \xi^2}} \quad \text{sin} \, (\omega_d \, \, t + \theta) \quad \text{where} \quad \theta \approx \tan^{-1} \, \, \frac{\sqrt{1 - \xi^2}}{\xi}$$

As at t = Tp, c(t) will achieve its maxima. According to Maxima theorem,

$$\frac{dc(t)}{dt}\bigg|_{t=T_p} = 0$$

So differentiating c(t) w.r.t. 't' we can write,

i.e.
$$-\frac{e^{-\xi\,\omega_{\,n}\,t}\,\left(-\xi\,\omega_{\,n}\right)\,\sin\left(\omega_{\,d}\,\,t+\theta\right)}{\sqrt{1-\xi^2}}\,-\,\frac{e^{-\xi\,\omega_{\,n}\,t}}{\sqrt{1-\xi^2}}\,\,\omega_{\,d}\,\cos\left(\omega_{\,d}\,\,t+\theta\right)=0$$

Substituting $\omega_d = \omega_n \sqrt{1-\xi^2}$

$$\frac{\xi\,\omega_{n}\,\,e^{\,-\,\xi\,\omega_{\,n}\,\,t}}{\sqrt{1-\xi^{\,2}}}\,\,\sin(\omega_{d}\,\,t+\,\theta)\,-\,\frac{e^{\,-\,\xi\,\omega_{\,n}\,\,t}}{\sqrt{1-\xi^{\,2}}}\,\,\omega_{n}\,\,\,\sqrt{1-\xi^{\,2}}\,\cos\left(\omega_{d}\,\,t+\,\theta\right)=0$$

$$\xi \sin \left(\omega_d \, t + \theta\right) - \sqrt{1 - \xi^2} \, \cos \left(\omega_d \, \, t + \theta\right) \; = \; 0 \quad \text{i.e.} \quad \tan \left(\omega_d \, \, t + \theta\right) = \frac{\sqrt{1 - \xi^2}}{\xi}$$

Now

$$\theta = \tan^{-1} \frac{\sqrt{1-\xi^2}}{\xi}$$
 i.e. $\frac{\sqrt{1-\xi^2}}{\xi} = \tan \theta$

$$tan (\omega_d t + \theta) = tan \theta$$

From trigonometric formula,

$$tan (n \pi + \theta) = tan \theta$$

$$\omega_d t = n \pi$$
 where $n = 1, 2,$

But T_p , time required for first peak overshoot. \therefore n = 1

$$\begin{array}{c|c} \omega_d T_p = \pi \\ \hline T_p = \frac{\pi}{\omega_d} = \frac{\pi}{\omega_n \sqrt{1 - \xi^2}} \sec \end{array}$$

 $\{c(t)|_{t = T_r}\} = 1$ for unit step input

$$\therefore 1 = 1 - \frac{e^{-\xi \omega_n T_r}}{\sqrt{1 - \xi^2}} \sin(\omega_d T_r + \theta)$$

$$\therefore -\frac{e^{-\xi \omega_n T_r}}{\sqrt{1-\xi^2}} \sin(\omega_d T_r + \theta) = 0$$

Equation will get satisfied only if,

$$\sin(\omega_d T_r + \theta) = 0$$

Trigonometrically this is true only if,

$$\omega_d T_r + \theta = n \pi$$
 where $n = 1, 2 \dots$

As we are interested in first attempt use n = 1

$$\therefore \quad \omega_d T_r + \theta = \pi$$

$$T_r = \frac{\pi - \theta}{\omega_d} \sec$$

Sol.: From given G(s), the closed loop T.F. is,

$$\frac{C(s)}{R(s)} = \frac{G(s)}{1 + G(s)H(s)} = \frac{10}{s^2 + 2s + 16}$$

Comparing denominator with $s^2 + 2\xi \omega_n s + \omega_n^2$,

$$\omega_n^2 = 16$$
, $\omega_n = 4$, $2\xi\omega_n = 2$, $\xi = 0.25$

i)
$$\omega_{\alpha} = 4 \text{ rad/sec}$$

ii)
$$\xi = Damping ratio = 0.25$$

iii) %
$$M_p = e^{-\pi \xi / \sqrt{1-\xi^2}} \times 100 = 44.43 \%$$

iv)
$$\omega_d = \omega_n \sqrt{1-\xi^2} = 3.873 \text{ rad/sec}$$

$$T_p = \frac{\pi}{\omega_d} = 0.811 \text{ sec}$$

$$T_{\rm g} = \frac{4}{\xi \omega_{\rm n}} = 4 \, {\rm sec}$$