
USN					

Internal Assessment Test 4 - Feb. 2022

			michina	1 1 1550551110111	1050	1 1 00. 202						
Sub:	: Design of Machine Elements - 1					Sub Code:	18ME52 Branch: Mech			ı		
Date:	2.2.22	Duration:	90 min's	Max Marks:	50	Sem/Sec:	: V/A&B				OBE	
Answer All the Questions Usage of Design data handbook is permitted							M	IARKS	СО	RBT		
 A shaft made up of C40 steel is subjected to a bending moment of 10 KN-m and a twisting moment of 8 kN-m. factor of safety used is 2.5. Determine the required diameter of the shaft according to: a) Maximum shear stress theory of failure. b) Maximum distortion energy of failure. 									[10]	CO1 CO2	L2	
2.	 A round rod of diameter 1.2d has semi-circular groove of diameter 0.2d. The rod is subjected to a bending moment of 10 kN-m. The material of the rod is C30 steel (yield strength is 294 MPa). Determine the safe value of 'd', if the factor of safety is 2. 								[10]	CO1 CO2	L3	

Internal Assessment test - 4 18ME52 - Design of machine Elements - 1 Solutions key

$$M_b = 10 \text{kNm} = 10^7 \text{ N-mm}$$

$$D = 1.2 \text{ d}; r = \frac{0.2d}{2} = 0.1d$$

$$D/d = 1.2 \text{ and } r/d = 0.1$$
From Fig 4.20 DDB, $K_{\sigma} = 1.885$
Also $\sigma_{max} = \frac{\sigma_y}{FOS} = 147 \text{ MPa}$

$$Now, K_{\sigma} = \frac{\sigma_{max}}{\sigma_{nom}}$$

$$1.885 = \frac{147}{\sigma_{nom}}$$

$$\sigma_{nom} = 77.894 \text{ MPa}$$
For bending load,
$$\sigma_{nom} = \frac{32M_b}{\pi d^3}$$
on simplifying,
$$d = 109.3 \approx 110 \text{ mm}$$

(i) For static loading 3

Allowable shear stress $\tau = \frac{P}{0.707wl}$ consider leg dimension = thickness of plate i.e w = h = 10 mmnow,

$$50 = \frac{50 \times 10^3}{0.707 \times 10 \times l}$$

 $l = 141.44 \ mm$

Adding 15 mm for starting and stopping, $l = 156 \ mm$

(ii) For dynamic loading,

for parallel fillet weld stress concentration $K_{-\sigma} = 2.7$

Permissible shear stress, $\tau = \frac{55}{2.7} = 20.32 \text{ MPa}$ Permissible tensile stress = $\frac{90}{1.5} = 60 \text{ MPa}$

$$\mathbf{P} = 0.707 \le l_n \sigma + 0.707 \le l_p \tau$$

On simplifying,

$$l_p = 264.3 \text{mm}$$

4 From 12.3 DDB, CG of weld is found as

Step 1:

$$C_x = 45 \text{ mm}$$

$$C_{\rm y} = 20 \; {\rm mm}$$

Step 2:

$$r = 91.79 \text{ mm}$$

$$\cos \varphi = 0.8716$$

eccentricity
$$e = 250+80 = 330 \text{ mm}$$

Step 3:

$$P_d = \frac{P}{l} = 80 \ N/mm$$

$$P_n = \frac{P \cdot e \cdot r}{J} = 710.98 \ N/mm$$

Step 5:

$$P_R = \sqrt{(P_d^2 + P_n^2 + 2.P_d \cdot P_n \cdot Cos\theta)} = 781.69 \text{ N/mm}$$

Step 6:

Allowable shear stress of weld,

$$\tau = \frac{P_R}{0.707w(1)}$$

Substituting the values,

$$w = 14.74 \ mm \approx 15 \ mm$$