

Internal Assessment Test V – Feb 2022

Sub: Dynamics of Machinery

Date: 08/02/2022 Duration: mins Marks: 50 Sem: V

| Code: 18ME53 | Branch: MECH | Code: 18ME53 | Code: 18ME54 | C

Note: Answer all questions.

Marks OBE CO RBT

1 State the conditions for the equilibrium of following systems:

Two force member ii) Three force member iii) Member with two force and torque

10 CO1

Determine torque T_2 to keep the mechanism in equilibrium shown in fig (a). AC = 70 mm, AB = 150 mm, $O_2A = 40 \text{ mm}$

20 CO1 L3

Internal Assessment Test V – Feb 2022

Sub: Dynamics of Machinery

90 Max

Date: 08/02/2022 Duration: mins Marks: 50 Sem: V

Code: 18ME53
Branch: MECH

10

Note: Answer all questions.

1 State the conditions for the equilibrium of following systems:

Two force member ii) Three force member iii) Member with two force and torque

Marks OBE CO RBT

CO₁

L1

Determine torque T_2 to keep the mechanism in equilibrium shown in fig (a).

 $AC = 70 \text{ mm}, AB = 150 \text{ mm}, O_2A = 40 \text{ mm}$

20 CO1 L3

A shaft carries four rotating masses P, Q, R & S in order, along with the axis. The mass center is at 160mm, 180mm, 200mm & 120mm respectively for P, Q, R & S from axis. The masses Q, R & S are 40kg, 30kg & 50kg respectively. The planes contain Q & R are 300mm apart. The angular position of R & S are 90° and 210° respectively, w.r.t. Q measured in same sense. If the shaft and masses are to be in complete dynamic balance. Determine: i) Mass and angular position of P ii)Positions of planes P & S.

CO2 L3

A shaft carries four rotating masses P, Q, R & S in order, along with the axis. The mass center is at 160mm, 180mm, 200mm & 120mm respectively for P, Q, R & S from axis. The masses Q, R & S are 40kg, 30kg & 50kg respectively. The planes contain Q & R are 300mm apart. The angular position of R & S are 90° and 210° respectively, w.r.t. Q measured in same sense. If the shaft and masses are to be in complete dynamic balance. Determine: i) Mass and angular position of P ii)Positions of planes P & S.

20 CO2 L3

Equilibrium of Two Force Members

A member under the action of two forces will be in equilibrium if

- The forces are of the same magnitude,
- The forces act along the same line, and the forces are in opposite directions

Equilibrium of Three Force Members

A member under the action of three forces will be in equilibrium if

- The resultant of the forces is zero, and
- The lines of action of the forces intersect at a point (known as *point of concurrency*).

Figure (a) indicates an example for the three force member and (b) and (c) indicates the force polygon to check for the static equilibrium.

Member with two forces and a torque

A member under the action of two forces and an applied torque will be in equilibrium if

- The forces are equal in magnitude, parallel in direction and opposite in sense and
- The forces form a couple which is equal and opposite to the applied torque.

Figure shows a member acted upon by two equal forces F_1 , and F_2 and an applied torque T for equilibrium,

$$T = F_1 h = F_2 h$$

Where T, F_1 and F_2 are the magnitudes of T, F_1 and F_2 respectively.

T is clockwise whereas the couple formed by F_1 , and F_2 is counter-clockwise.

2 **Problem**

Determine T2 to keep the mechanism in equilibrium

AC=70mm, AB=150mm, O₂A= 40mm

Solution:

Force Polygon

$$T_2 = F_{32} * h = F_{12} * h$$

 F_{32} and F_{12} form a CCW couple and hence T_2 acts clock wise.

Mar 2001 Dec 201/P

PROBLEMS

A Shaft Carries four rotating masses P, R, R & S inorder along the axis. The mass centre is at 160 mm, 180 mm, 200 mm & 120 mm respectively. for P, R, R, S from axis.

The masses R, R & S are 40kg, 30kg & 50kg resp.

The planes Containing R & R are 300 mm apart. The angular positions of R & S are 90° & 210° respectively.

Wirt R measured in Same Sense. If the Shaft & Wirt R masses are to be in Complete dynamic balance. Determine

i) Mass & angular position of P ii) Positions of planes P&S.

Sol

Planes	Masses m (Kg)	Radius of rotation 91 (m)	Centrifugal force ÷ ws* mr(kg-m)	Distance from R.P 'L' (m)	Couple + w2 mnl kg-m2
P	mp	0.16	0.16 mp	- ×	-0.16mp.x
Q	40	0.18	7.2	0	0
R	30	0.2	6	0.3	1.8
S	50	0.12	6	9	69

$$-0.16 \text{ Mp } x = 06 \text{ X SCalc}$$

$$-0.16 \times 22.5 \times x = 16.6 \times 0.2$$

$$x = -3.32$$

$$-0.16 \times 22.5$$