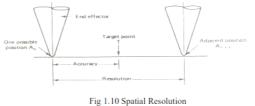
USN					



Internal Assessment Test 5 – February 2022

Sub	Sub Computer Aided Design & Manufacturing (CADM)						18ME72	Branch	Me	ech
Date	07.02.22	Duration	10.15 AM 11.45 AM	Max Marks	50	Sem / Sec	VII/A	OE	3E	
	Answer All Questions								СО	RBT

	Explain the following terminology related to Robot (i) Accuracy (ii) Resolution (iii)															
1	Repeatability										10	CO4	L2			
2	The following of	lata re	efers	to the	prec	eden	ce rela	tionshi	р& е	elemen	t times	for a	new			
	product				•				•							
	Element No 1 2 3 4 5 6 7 8 9 10 11 12										i					
	Tc(min) Precedence	0.2	0.2 0.4 0.7 0.1 0.3 0.11 0.32 0.6 0.27 0.38 0.5 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.1													
	Using Largest c	andid	ate ru	le me	,	l	3] 3	3,4	0,7,8	3,0	9,10	11	10	CO3	L4
	0 0															
	(i) Construct the	prec	edenc	e dia	gram											
	(ii) If the ideal of	ycle t	ime i	s 1 m	in fin	d the	no. of	work s	statio	ns requ	ired.					
	(iii) Balance del	ay an	d Bal	ance	effici	ency.										
3 The following data refers to the precedence relationship & element times for a new																
product																
	Element No 1 2 3 4 5 6 7 8 9 10 11 12															
	Tc(min)	0.2	0.4	0.7	0.1	0.3	0.11	0.32	0.6	0.27	0.38	0.5	0.12			
	Precedence	- 1 1	- (X 74 -	1	1,2	2	3	3	3,4	6,7,8	5,8	9,10	11	10	CO3	L4
	Using Kilbridge	ana	weste	ers me	etnoa	Tina										
	(i) Construct the	prec	edenc	e dia	gram											
(ii) If the ideal cycle time is 1 min find the no. of work stations required.																
	(II) II tile ideal C	ycle t	ıme ı	3 1 111		(iii) Balance delay and Balance efficiency.										
	, ,	•				ency.				-						
4	, ,	ay an	d Bal	ance	effici			th nea	t sket	tches a	nd exp	olain a	bout			
4	(iii) Balance del	ay an ferent	d Bal	ance (effici tions	of ro	bot wi	th nea	t sket	tches a	nd exp	olain a	bout	10	CO4	L2
	(iii) Balance del Explain the diff various applicat	ay an ferent ions a	d Bal conf reas	ance of ind	effici tions lustria	of ro	bot wi							10	CO4	L2
4	(iii) Balance del Explain the diff	ay an ferent ions a	d Bal conf reas	ance of ind	effici tions lustria	of ro	bot wi							10	CO4	L2

1. The precision with which the robot can move the end of its wrist Spatial resolution, Accuracy & Repeatability. Spatial resolution smallest increment of motion at the wrist end that can be controlled by the robot Depends on the position control system, feedback measurement, and mechanical accuracy

Smallest increment of motion

Depends on the control system and feedback

Control resolution = range Control increments

Spatial Resolution

Accuracy

Capability to position the wrist at a target point in the work volume

- · One half of the distance between two adjacent resolution points
- · Affected by mechanical Inaccuracies
- Manufacturers don't provide the accuracy (hard to control)

The ability of a robot to go to the specified position without making a mistake. Closely related to spatial resolution

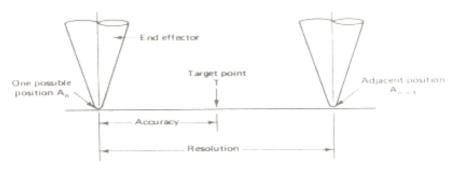


Fig 1.11 Accuracy

Repeatability

Ability to position back to a point that was previously taught

- · Repeatability errors form a random variable.
- · Mechanical inaccuracies in arm, wrist components
- Larger robots have less precise repeatability values

St The following data mobers to the Procedence metatroniship and element times for a new product

Elementano 1 2 3 4 5 6 7 \$ 04 10 11 12

Teconin) 02 04 07 01 03 011 032 06 011 055 06 012

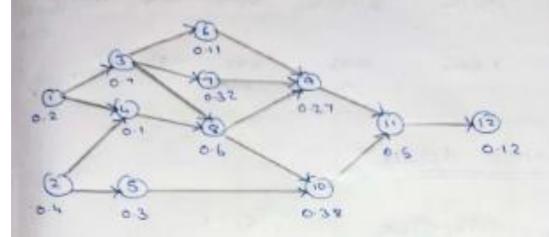
[Interchance = - 1 117 2 3 3 34 653 54 940 11

using Languet candidate arole maked

- . Y construct the precedence diagram
- 1) If the ideal cycle time is nomin And the no of wome stations aromorphised.
- . I Balance delay & Balance efforciency.

Jos Testomin

ander of their element time


Clement	Te Comin)	Poweredence
3	0.7	1
9	0.6	3,4
3.0	0.9	9110
2.	0.4	-
10	0.38	5,8
7	0.32	3
5	0.3	3
9	0.32	3

1	0.2	-
12	0.12	- 4 11
6	0-11	3
4	0.1	1/2

Step 2: Assigning the coook element to bookie station's [Talmin]

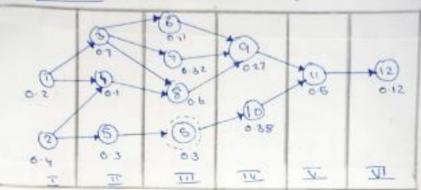
		Pracedonce	Te	Clement
Total S 10	W PLOFFE	the countries	-	
0.4+0.3+0.2		-	0.4	3
+ 0-15 lm/e	I	2	0.3	5
		-	0.2	,
		112	0-1	4
074041+047		1	6.7	3
= 0.43 mil	77	11	0.12	12
		3	0-1	6
550100	70	3,4	0.6	8
= 0.92mil		3	0.32	7
0.3810.27	- Total	6,8	0-3-9	10
: 0-65	10	6,7,9	0.27	9
o Smin	V	9.10	0.5	1.5

Sleps: Construct the Priecedence diagram

Steps: Determine I'm hoometical number of

number of womestakeous measured

n = Twe

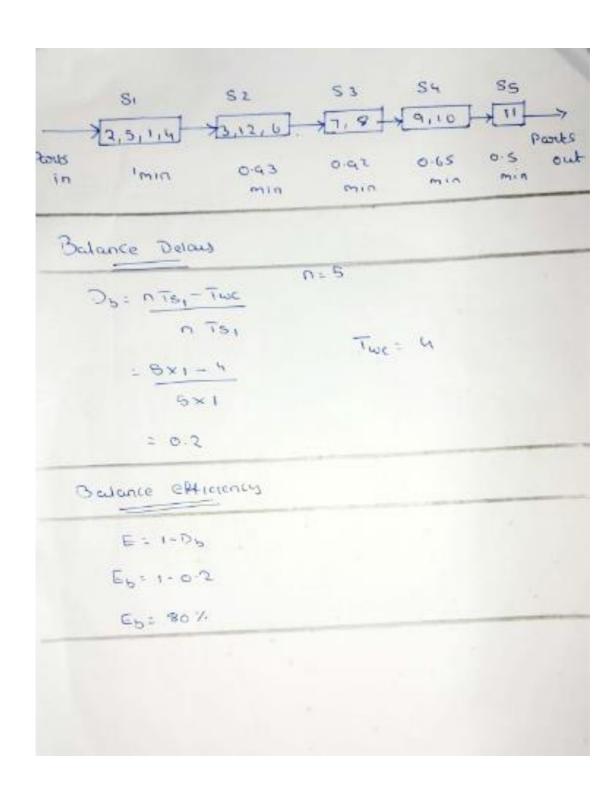

Twe - Te, + Tez + Tes --- + Tero

+0.4+0.3+0.2+0.1+0.11+0.12+0.6+0.32+0.38

Steps: Computing Line bedencing delay & Line
Balancing efficiency.

Kill bonidge and westers method

SLEP 1 : Porecedence diagram



Steps: List out elements Along column wise & According to be element times in the purticular column

coonic element	column	Te	Porecoded by
0	750	0.2	-
②	工工	0.4	-
3	II	0.7	-1
0	λī	01	1, 2
(3)	100	0.3	2
6	100	0-11	5
0	1.00	0.35	3
1	700	06	3,4
(9)	110	0 97	6,1,8
(10)	10	0.39	5,9
000	V	0.9	9,16
(3)	74.00		64

Steps: work elements assigned to the Stations
According to Icil brige & western method

Element	Column	Tes	Penecodente	SINGO	Total
2		04	-		Fine
5	2	0-3	3	I	Trace too
	1	0-2	-		1 min
ч	2	0-1	11.5		
3	2	D-7	1		
172	6	0.12	4.6	<u>A1</u>	0.93
G	3	011	3		min
7	3	0.32	3	TV	0.92
9	Ly	0.6	314		
٩	4	0.27	6,7,9	-70	
10	5	0.38	5,9	W	0.65
1.	6	0.5	9110	- X	0-6

Classification of robots based on robots configuration Polar Coordinate Body-and-Arm Assembly

Consists of a sliding arm (L joint) actuated relative to the body, which can rotate about both a vertical axis (T joint) and horizontal axis (R joint) Notation TRL:

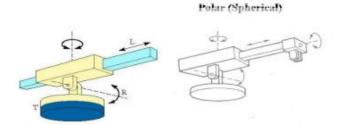


Fig 1.3 Polar Configuration

4.

Cylindrical Body-and-Arm Assembly

Consists of a vertical column, relative to which an arm assembly is moved up or down. The arm can be moved in or out relative to the column Notation TLO:

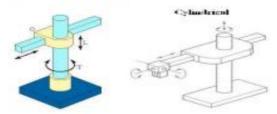


Fig 1.4 Cylindrical Configuration

Cartesian coordinate Body-and-Arm Assembly

Consists of three sliding joints, two of which are orthogonal other names include rectilinear robot and x-y-z robot Notation LOO:

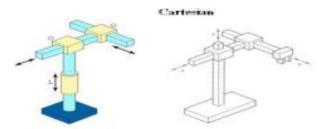


Fig 1.5 Cartesian Configuration

Jointed-Arm Robot

Similar in appearance to human arm Rotated base, shoulder joint, elbow joint, wrist joint. Notation TRR:

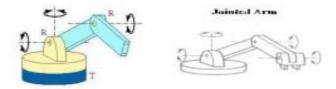
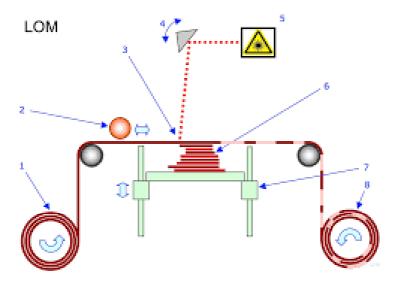



Fig 1.6 Jointed Arm Configuration

Application areas of industrial robots has been categorized into the following seven areas.

- 1. Material Transfer
- 2. Machine Loading
- 3. Welding
- 4. Spray Coating
- 5. Processing Operations 6. Assembly
- 7. Inspection

The physical model is formed by stacking layers of sheet Based on the build material it has two type

- Laminated Object Manufacturing (LOM)
- Ultrasonic Additive Manufacturing (UAM)

LOM uses paper as material and adhesive

UAM used sheets of metal bonded by ultrasonic welding Instead of adhesive

Process steps

- 1. The sheet and the adhesive is placed on the platform
- 2. Laser is employed to cut the required shape forms the first layer
- 3. The spool is rotated for the next layer to position on the first and they are bonded by adhesive heat rolle
- 4. The required shape is cut by the laser
- 5. The process repeats till the required thickness is obtained
- 6. The build is removed to carry the post processing work.

Advantages

- 1. The process is faster and economical
- 2. The strength of the part depend on the type of the bond laminated
- 3. The LOM process does not induce any residual stresses in the finished product

Disadvantages

- 1. Post processing is required to achieve the desired shape
- 2. Limitation in variety of material usage
- 3. This sheet lamination further requires some research

5.

Directed Energy Deposition (DED)

In this process the part is created by melting the Material as it is being deposited

This process is widely used for repair and Maintenance rather than fabricating parts

Laser or electron beam or plasma arc is used As energy source

The metal pool is formed at the when the energy Source is directed over the deposited metal and Solidifies as the beam moves away

Process steps

- 1. Deposition head is mounted around the fixed object.
- 2. Material in the wire or powder form deposited by the nozzle
- 3. Using energy source the material is melted
- 4. Further material is added layer by layer as it solidifies

Advantages

- 1. Capable of producing denser parts
- 2. Utilized effectively for repairing and refurbishing components like turbine blades, crank shafts and bearings

Disadvantages

- 1. The process is time consuming
- 2. Components have poor resolution and surface finish
- 3. Limited material use
- 4. Further this process requires research