
1 | P a g e

ANSWER KEY

Internal Assessment Test 3 – Jan , 2022

Sub: Data Analytics using Python
Sub

Code:
20MCA31

Date: 25/01//2022 Duration:
90

min’s

Max

Marks:
50 Sem: III Branch: MCA

1 Write a Python code to create an account object with at least two functions?

Python program to create Bankaccount class

with both a deposit() and a withdraw() function

class Bank_Account:

 def __init__(self):

 self.balance=0

 print("Hello!!! Welcome to the Deposit & Withdrawal Machine")

 def deposit(self):

 amount=float(input("Enter amount to be Deposited: "))

 self.balance += amount

 print("\n Amount Deposited:",amount)

 def withdraw(self):

 amount = float(input("Enter amount to be Withdrawn: "))

 if self.balance>=amount:

 self.balance-=amount

 print("\n You Withdrew:", amount)

 else:

 print("\n Insufficient balance ")

 def display(self):

 print("\n Net Available Balance=",self.balance)

Driver code

creating an object of class

s = Bank_Account()

Calling functions with that class object

s.deposit()

s.withdraw()

s.display()

2 How to create dictionary in python. Explain five methods with a brief description with example

2 | P a g e

thisdict = {
 "brand": "Ford",
 "model": "Mustang",
 "year": 1964
}

Dictionary
Dictionaries are used to store data values in key:value pairs.

A dictionary is a co llection which is ordered*, changeable and do not allow

duplicates.
As of Python version 3.7, dictionaries are ordered. In Python 3.6 and earlier,

dictionaries are unordered.

Dictionaries are written with curly brackets, and have keys and values:

Example
Create and print a dictionary:
thisdict = {
 "brand": "Ford",
 "model": "Mustang",
 "year": 1964
}
print(thisdict)

3

How to create Constructors and method overriding in Python?

Constructors are generally used for instantiating an object. The task of constructors

is to initialize(assign values) to the data members of the class when an object of the

class is created. In Python the __init__() method is called the constructor and is

always called when an object is created.

Syntax of constructor declaration :
def __init__(self):
 # body of the constructor
Types of constructors :
 default constructor: The default constructor is a simple constructor which

3 | P a g e

doesn’t accept any arguments. Its definition has only one argument which is a

reference to the instance being constructed.

 parameterized constructor: constructor with parameters is known as
parameterized constructor. The parameterized constructor takes its first argument

as a reference to the instance being constructed known as self and the rest of the

arguments are provided by the programmer.

Example of default constructor :

 Python3

class GeekforGeeks:

 # default constructor
 def __init__(self):
 self.geek = "GeekforGeeks"

 # a method for printing data members
 def print_Geek(self):
 print(self.geek)

creating object of the class
obj = GeekforGeeks()

calling the instance method using the object obj
obj.print_Geek()

Parameterised constructor

class Addition:
 first = 0
 second = 0
 answer = 0

 # parameterized constructor
 def __init__(self, f, s):
 self.first = f
 self.second = s

 def display(self):
 print("First number = " + str(self.first))
 print("Second number = " + str(self.second))
 print("Addition of two numbers = " + str(self.answer))

 def calculate(self):
 self.answer = self.first + self.second

creating object of the class
this will invoke parameterized constructor
obj = Addition(1000, 2000)

perform Addition
obj.calculate()

display result
obj.display()

4 What are step in data preprocessing ? Explain with an example

Need of Data Preprocessing

4 | P a g e

 For achieving better results from the applied model in Machine Learning projects

the format of the data has to be in a proper manner. Some specified Machine

Learning model needs information in a specified format, for example, Random
Forest algorithm does not support null values, therefore to execute random forest

algorithm null values have to be managed from the original raw data set.

 Another aspect is that the data set should be formatted in such a way that more

than one Machine Learning and Deep Learning algorithm are executed in one

data set, and best out of them is chosen.

1. Rescale Data

 When our data is comprised of attributes with varying scales, many machine

learning algorithms can benefit from rescaling the attributes to all have the same

scale.

 This is useful for optimization algorithms in used in the core of machine learning

algorithms like gradient descent.

 It is also useful for algorithms that weight inputs like regression and neural

networks and algorithms that use distance measures like K-Nearest Neighbors.

 We can rescale your data using scikit-learn using the MinMaxScaler class.

Code: Python code to Rescale data (between 0 and 1)

 Python

importing libraries
import pandas
import scipy
import numpy
from sklearn.preprocessing import MinMaxScaler

data set link
url = "https://archive.ics.uci.edu/ml/machine-learning-databases/pima-
indians-diabetes/pima-indians-diabetes.data"
data parameters
names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age',
'class']

preparating of dataframe using the data at given link and defined columns

list
dataframe = pandas.read_csv(url, names = names)
array = dataframe.values

separate array into input and output components
X = array[:,0:8]
Y = array[:,8]

initialising the MinMaxScaler
scaler = MinMaxScaler(feature_range=(0, 1))
learning the statistical parameters for each of the data and transforming
rescaledX = scaler.fit_transform(X)

summarize transformed data
numpy.set_printoptions(precision=3)
print(rescaledX[0:5,:])

2. Binarize Data (Make Binary)

 We can transform our data using a binary threshold. All values above the

threshold are marked 1 and all equal to or below are marked as 0.

 This is called binarizing your data or threshold your data. It can be useful when

you have probabilities that you want to make crisp values. It is also useful when

feature engineering and you want to add new features that indicate something

http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://archive.ics.uci.edu/ml/machine-learning-databases/pima-indians-diabetes/pima-indians-diabetes.data
https://archive.ics.uci.edu/ml/machine-learning-databases/pima-indians-diabetes/pima-indians-diabetes.data

5 | P a g e

meaningful.

 We can create new binary attributes in Python using scikit-learn with

the Binarizer class.
Code: Python code for binarization

 Python

import libraries
from sklearn.preprocessing import Binarizer
import pandas
import numpy

data set link
url = "https://archive.ics.uci.edu/ml/machine-learning-databases/pima-
indians-diabetes/pima-indians-diabetes.data"
data parameters
names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age',
'class']

preparating of dataframe using the data at given link and defined columns

list
dataframe = pandas.read_csv(url, names = names)
array = dataframe.values

separate array into input and output components
X = array[:, 0:8]
Y = array[:, 8]
binarizer = Binarizer(threshold = 0.0).fit(X)
binaryX = binarizer.transform(X)

summarize transformed data
numpy.set_printoptions(precision = 3)
print(binaryX[0:5,:])

5 Discuss any five methods to handle the missing data with python code \

The possible ways to do this are:
i) Deleting the columns with missing data
ii) Deleting the rows with missing data
iii) Filling the missing data with a value – Imputation- mean , median
iv) Filling the missing data with mode if it’s a categorical value.
v) Filling with a Regression Model

In []:

method -1 - Deleting the columns with missing data

df = pd.DataFrame(np.random.randn(7,3))

df.iloc[:4, 1] = np.nan

df.iloc[:2, 2] =np.nan

df

Deleting the columns with missing data

df.dropna(axis=1)

http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.Binarizer.html
https://archive.ics.uci.edu/ml/machine-learning-databases/pima-indians-diabetes/pima-indians-diabetes.data
https://archive.ics.uci.edu/ml/machine-learning-databases/pima-indians-diabetes/pima-indians-diabetes.data

6 | P a g e

In []:
method -2 - Deleting the rows with missing data

df = pd.DataFrame(np.random.randn(7,3))

df.iloc[:4, 1] = np.nan

df.iloc[:2, 2] =np.nan

df

Deleting the columns with missing data

df.dropna(axis=0)

Method -3 Drop all NAN rows

df = pd.DataFrame(np.random.randn(7,3))

df.iloc[:4, 1] = np.nan

df.iloc[:2, 2] =np.nan

df

df.dropna()

Method -4 fill with zero

7 | P a g e

df = pd.DataFrame(np.random.randn(7,3))

df.iloc[:4, 1] = np.nan

df.iloc[:2, 2] =np.nan

df

df.fillna(0, inplace=True)

In []:

##Method-5 Threshold -keyword

df = pd.DataFrame(np.random.randn(7,3))

df.iloc[:4, 1] = np.nan

df.iloc[:2, 2] =np.nan

df

df.dropna(thresh=2)

In []:

method -6 Filling the missing data with a value –Imputation - mean

df = pd.DataFrame(np.random.randn(7,3))

df.iloc[:4, 1] = np.nan

df.iloc[:2, 2] =np.nan

df

df.fillna(df.mean(), inplace=True)

8 | P a g e

In []:

method -7 - Filling the missing data with a value – Imputation-median

df = pd.DataFrame(np.random.randn(7,3))

df.iloc[:4, 1] = np.nan

df.iloc[:2, 2] =np.nan

df.info()

d

df.fillna(df.median(), inplace=True

6 Write python code for the following using Pandas:

I. read from and write into CSV

II. read from and write into JSON

9 | P a g e

10 | P a g e

7

Write python code to interact with database and perform the following task

I. Create table
II. Insert 3 record into table

III. Display all records

SQL Based relational Databases are widely used to store data. Eg - SQL Server, PostgreSQL,
MySQL, etc. Many alternative databases have also become quite popular.
The choice of DataBase is usually dependant on performance, data integrity and scalability
nneds of the application.
Loading data from SQl to DataFrame is straightforward. pandas has some functions to
simplify the process.
In this example, we create a SQLite database using Python's built in sqlite3 driver.
Most SQL Drivers (PyODBC, psycopg2, MySQLdb, pymssql, etc.) return a list of tuples when
selecting data from table. We can use these list of tuples for the DataFrame, but the column

11 | P a g e

names are present in the cursor's 'description' attribute.

Most SQL Drivers (PyODBC, psycopg2, MySQLdb, pymssql, etc.) return a list of tuples when
selecting data from table. We can use these list of tuples for the DataFrame, but the column
names are present in the cursor's 'description' attribute.

8 Write any 5 built- in Pandas aggregations functions to table summarizes . explain with an example

The groupby() function returns a GroupBy object, but essentially describes how the rows of the original

12 | P a g e

data set has been split. the GroupBy object .groups variable is a dictionary whose keys are the computed
unique groups and corresponding values being the axis labels belonging to each group. For example:
data.groupby(['month']).groups.keys()

Out[59]: ['2014-12', '2014-11' , '2015-02' , '2015-03', '2015-01']

len(data.groupby(['month']).groups['2014-11'])
Out[61]: 230
Functions like max(), min(), mean(), first(), last() can be quickly applied to the GroupBy object to obtain
summary statistics for each group – an immensely useful function.

