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CMR Institute of Technology 

Department of Computer Applications 

 

IAT 4 – Answer Key 

 

 

Describe any 4 characteristics (4 Vs of Big Data) 

 
Characteristics of Big Data: 

 
1. Volume 

2. Velocity 

3. Variety 

4. Value 

 
Volume: The main characteristic that makes data “big” is the sheer volume. It makes 

no sense to focus on minimum storage units because the total amount of 
information is 

growing exponentially every year. 

 
Variety: is one the most interesting developments in technology as more and 

more information is digitized. Traditional data types (structured data) include things on 

a bank statement like date, amount, and time. 

 
Velocity is the frequency of incoming data that needs to be processed. 

 
Value: Analysis add value to your business is measured. 

 

b Discuss the application of big data analytics 
 

 

 
 

 

c With a neat diagram, describe the working of analytical processing model  



 
 

  

 
 

1. Define the business problems to be solved 

2. All source-data need to be identified that could be of potential interest. 

3. All data to be gathered in a staging area 

4. Basic exploratory analysis will be considered. 

5. Data cleaning step to get rid of all inconsistencies 

6. In the analytics step, an analytical model will be estimated on the preprocessed 

and transformed data. 

 

Once the model is built it will interpreted and evaluated by the business experts. 

 

   

2 a Mention the different types of data sources: 

 
Transaction: - Transactional data consists of structured, low-level, detailed 

information capturing the key characteristics of a customer transaction. 

 
Un-Structured data: – are stored in form of text documents. 

Qualitative, expert based data:-Subject matter expertise 

Data-Poolers:- Dun & Bradstreet, Thomson Reuters 

Social Media: Data from face book and twitter etc. 

 

b Calculate the Z-Score and detect the outlier for the following 
data. Where mean = 40 Standard deviation = 10 and Data= 30 50 
10 40 60 80 

 



 
 

  

 
 

Standard 
Observation Mean Deviation Z-Score 

30 40 10 -1 

50 40 10 1 

10 40 10 -3 

40 40 10 0 

60 40 10 2 

80 40 10 4 

 

 
 

Any z-score greater than 3 or less than -3 is considered to be an outlier. Hence 
the data 80 is outlier. 

 

c Various factors required for analytical model: 

 
1. Business relevance 

2. Statistical performance 

3. Operational efficient 

4. Economic cost 

5. Local and International regulations and legislation 
 

 

 

 

 

    

    

    

    

    

    

    

 



 
 

 

 
 

 

 

   

3 a Discuss the critical components of hadoop with neat diagram 
 

 

 

 

 



 
 

 

 

 

b What is predictive analysis? Why are they required?Discuss the leading trends of 

predictive analysis. 

 



 
 

  

 

 

   

4 a List and Explain the technical features of Hadoop 

 
Hadoop is an open source, Scalable, and Fault tolerant framework written in Java. It 

efficiently processes large volumes of data on a cluster of commodity hardware. Hadoop 

is not only a storage system but is a platform for large data storage as well as processing. 

 
1. Open Source 

 

Apache Hadoop is an open source project. It means its code can be modified according 

to business requirements. 
 

2. Distributed Processing 
 

As data is stored in a distributed manner in HDFS across the cluster, data is processed in 

parallel on a cluster of nodes. 
 

3. Fault Tolerance 
 

By default 3 replicas of each block is stored across the cluster in Hadoop and it can be 

changed also as per the requirement. So if any node goes down, data on that node can 

be recovered from other nodes easily. Failures of nodes or tasks are recovered 

automatically by the framework. This is how Hadoop is fault tolerant. 

 

http://data-flair.training/blogs/data-blocks-hdfs-hadoop-distributed-file-system/
http://data-flair.training/blogs/learn-hadoop-hdfs-fault-tolerance/


 
 

 4. Reliability 
 

Due to replication of data in the cluster, data is reliably stored on the cluster of machine 

despite machine failures. If your machine goes down, then also your data will be stored 

reliably. 
 

5. High Availability 
 

Data is highly available and accessible despite hardware failure due to multiple copies of 

data. If a machine or few hardware crashes, then data will be accessed from another 

path. 

 

b Write notes on Crowdsourcing and Mobile business intelligence. 

 
Crowdsourcing is a great way to capitalize on the resources that can build 

algorithms and predictive models. 

 
Crowd sourcing is a cost and time effective method for moderating and curating data. It 

has no over head costs and produces high quality results with little investment. 

 
Crowdsourcing is a disruptive business model whose roots are in technology 

but is extending beyond technology to other areas. 

There are various 

types of crowdsourcing, such as crowd voting, crowd purchasing, wisdom of 

crowds, crowd funding, and contests. 

Take for example: 

 

■ 99designs.com/ , which does crowdsourcing of graphic design 

■ agentanything.com/ , which posts “missions” where agents vie for to 
run errands 

■ 33needs.com/ , which allows people to contribute to charitable 

programs that make a social impact 
 

 
Mobile Intelligence: 

 
Analytics on mobile devices is what some refer to as putting BI in your pocket. 

Mobile drives straight to the heart of simplicity and ease of use that has been 

a major barrier to BI adoption since day one. Mobile devices are a great leveling 

field where making complicated actions easy is the name of the game. 

 
Three elements that have impacted the viability of mobile BI: 

1. Location—the GPS component and location . . . know where you 

are in time as well as the movement. 

2. It ’s not just about pushing data; you can transact with your smart 

phone based on information you get. 

 

http://data-flair.training/blogs/hadoop-high-availability-tutorial/


 
 

 3. Multimedia functionality allows the visualization pieces to really come 

into play. 

 
Three challenges with mobile BI include: 

1. Managing standards for rolling out these devices. 

2. Managing security (always a big challenge). 

3. Managing “bring your own device,” where you have devices both 

owned by the company and devices owned by the individual, both 

Contributing to productivity. 

 

   

5 a Explain the various open source technologies of Hadoop Eco-System. 

 
Common 

A set of components and interfaces for distributed filesystems and general I/O 

(serialization, Java RPC, persistent data structures). 

 
Avro 

A serialization system for efficient, cross-language RPC, and persistent data storage. 

 
MapReduce 

A distributed data processing model and execution environment that runs on large 

clusters of commodity machines. 

 
HDFS 

A distributed filesystem that runs on large clusters of commodity machines. 

 
Pig 

A data flow language and execution environment for exploring very large datasets. 

Pig runs on HDFS and MapReduce clusters. 

 
Hive 

A distributed data warehouse. Hive manages data stored in HDFS and provides a 

query language based on SQL (and which is translated by the runtime engine to 

MapReduce jobs) for querying the data. 

 
HBase 

A distributed, column-oriented database. HBase uses HDFS for its underlying 

storage, and supports both batch-style computations using MapReduce and point 

queries (random reads). 

 
ZooKeeper 

A distributed, highly available coordination service. ZooKeeper provides primitives such 

as distributed locks that can be used for building distributed applications. 

 
Sqoop 

A tool for efficiently moving data between relational databases and HDFS. 

 

b Discuss the difficulties of implementing storage and analysis support for big 
data. 

 



 
 

  

 

 

   

6 a List the differences between map reduce and RDBMs  



 
 

 

 

 

b Grid Computing: 

 
The High Performance Computing (HPC) and Grid Computing communities have 

been doing large-scale data processing for years, using such APIs as Message Passing 

Interface (MPI). Broadly, the approach in HPC is to distribute the work across a cluster of 

machines, which access a shared filesystem, hosted by a SAN. This works well for 

predominantly compute-intensive jobs, but becomes a problem when nodes need to 

access larger data volumes (hundreds of gigabytes, the point at which MapReduce really 

starts to shine), since the network bandwidth is the bottleneck and compute nodes 

become idle. 

 
MapReduce tries to collocate the data with the compute node, so data access is fast 

since it is local. This feature, known as data locality, is at the heart of MapReduce and is 

the reason for its good performance. Recognizing that network bandwidth is the most 

precious resource in a data center environment (it is easy to saturate network links by 

copying data around), MapReduce implementations go to great lengths to conserve it by 

explicitly modelling network topology. Notice that this arrangement does not preclude 

high-CPU analyses in MapReduce 

 
Volunteer Computing: 

 
Volunteer computing projects work by breaking the problem they are trying to 

solve into chunks called work units, which are sent to computers around the world to be 

analyzed. For example, a SETI@home work unit is about 0.35 MB of radio telescope 

data, and takes hours or days to analyze on a typical home computer. When the analysis 

is completed, the results are sent back to the server, and the client gets another work 

unit. As a precaution to combat cheating, each work unit is sent to three different 

machines and needs at least two results to agree to be accepted. Although SETI@home 

may be superficially similar to MapReduce (breaking a problem into independent pieces 

 



 
 

 to be worked on in parallel), there are some significant differences. 

The SETI@home problem is very CPU-intensive, which makes it suitable for 

running on hundreds of thousands of computers across the world,8 since the time to 

transfer the work unit is dwarfed by the time to run the computation on it. Volunteers 

are donating CPU cycles, not bandwidth. MapReduce is designed to run jobs that last 

minutes or hours on trusted, dedicated hardware running in a single data center with 

very high aggregate bandwidth interconnects. 

 

   

7 a What is a memory block in HDFS? Explain block report, replication factor 
and rack awareness with respect to data node. 

 
HDFS concepts: 

 
A disk has a block size, which is the minimum amount of data that it can read or write. 

Filesystems for a single disk build on this by dealing with data in blocks, which are an 

integral multiple of the disk block size. Filesystem blocks are typically a few kilobytes in 

size, while disk blocks are normally 512 bytes. This is generally transparent to the 

filesystem user who is simply reading or writing a file — of whatever length. 

However,there are tools to perform filesystem maintenance, such as df and fsck, that 

operate on the filesystem block level. 

HDFS, too, has the concept of a block, but it is a much larger unit—64 MB by default.Like 

in a filesystem for a single disk, files in HDFS are broken into block-sized chunks,which 

are stored as independent units. 

 
Name nodes and Data nodes: 

 
An HDFS cluster has two types of node operating in a master-worker pattern: a 

namenode (the master) and a number of datanodes (workers). The namenode manages 

the filesystem namespace. It maintains the filesystem tree and the metadata for all the 

files and directories in the tree. This information is stored persistently on the local disk in 

the form of two files: the namespace image and the edit log. The namenode also knows 

the datanodes on which all the blocks for a given file are located, however, it doesnot 

store block locations persistently, since this information is reconstructed fromdatanodes 

when the system starts. 

 
A client accesses the filesystem on behalf of the user by communicating with the 

namenode and datanodes. The client presents a POSIX-like filesystem interface, so the 

user code does not need to know about the namenode and datanode to 

function.Datanodes are the workhorses of the filesystem. They store and retrieve blocks 

when they are told to (by clients or the namenode), and they report back to the 

namenode periodically with lists of blocks that they are storing. 

 

b Discuss any 4 HDFS commands.  



 
 

 appendToFile 

 
Usage: hdfs dfs -appendToFile <localsrc> ... <dst> 

 
cat 

 
Usage: hdfs dfs -cat URI [URI ...] 

 
chgrp 

 
Usage: hdfs dfs -chgrp [-R] GROUP URI [URI ...] 

 
chmod 

 
Usage: hdfs dfs -chmod [-R] <MODE[,MODE]... | OCTALMODE> URI [URI ...] 

 

   

 

 
8 a 

 

 
Explain the architectural changes that are needed while replacing active 
name node with stand by name node. 

 

Namenode: Namenode holds the meta data for the HDFS like Namespace 
information, block information etc. When in use, all this information is stored in main 
memory. But these information also stored in disk for persistence storage. 

 

 
 

 

 
 

The above image shows how Name Node stores information in disk. 

Two different files are fsimage - Its the snapshot of the filesystem when namenode 
started  

 



 
 

 Edit logs - Its the sequence of changes made to the filesystem after namenode started 

 
Only in the restart of namenode , edit logs are applied to fsimage to get the latest 

snapshot of the file system. But namenode restart are rare in production clusters which 

means edit logs can grow very large for the clusters where namenode runs for a long 

period of time. The following issues we will encounter in this situation. 

 
Editlog become very large , which will be challenging to manage it 

Namenode restart takes long time because lot of changes has to be merged. 

 

In the case of crash, we will lost huge amount of metadata since fsimage is very old 
So to overcome this issues we need a mechanism which will help us reduce the edit log 

size which is manageable and have up to date fsimage ,so that load on namenode 

reduces . It’s very similar to Windows Restore point, which will allow us to take snapshot 

of the OS so that if something goes wrong , we can fallback to the last restore point. 

 

 
So now we understood NameNode functionality and challenges to keep the meta data 

up to date.So what is this all have to with Seconadary Namenode? 

 

 
Secondary Namenode: 

 

 
Secondary Namenode helps to overcome the above issues by taking over responsibility 

of merging editlogs with fsimage from the namenode. 

 



 
 

  

 

 

 

 
 

 

 

 

The above figure shows the working of Secondary Namenode 

 
1. It gets the edit logs from the namenode in regular intervals and applies to fsimage 

2. Once it has new fsimage, it copies back to namenode 

3. Namenode will use this fsimage for the next restart,which will reduce the startup 

time 

 
Secondary Namenode whole purpose is to have a checkpoint in HDFS. Its just a helper 

node for namenode.That’s why it also known as checkpoint node inside the community. 

 

b With a neat diagram, explain the anatomy of reading data from a file in 

HDFS. 

 
To get an idea of how data flows between the client interacting with HDFS, the 

namenode and the datanodes, consider Figure which shows the main sequence of 

events when reading a file. 

 



 
 

 

 
The client opens the file it wishes to read by calling open() on the FileSystem object, 

which for HDFS is an instance of DistributedFileSystem (step 1 in Figure). 

 
DistributedFileSystem calls the namenode, using RPC, to determine the locations of 

the blocks for the first few blocks in the file (step 2). 

 
For each block, the namenode returns the addresses of the datanodes that have a copy 

of that block. Furthermore, the datanodes are sorted according to their proximity to the 

node. If the client is itself a datanode (in the case of a MapReduce task, for instance), 

then it will read from the local datanode, if it hosts a copy of the block. 

 

The DistributedFileSystem returns an FSDataInputStream (an input stream that supports 

file seeks) to the client for it to read data from. FSDataInputStream in turn wraps a 

DFSInputStream, which manages the datanode and namenode I/O. 

 
The client then calls read() on the stream (step 3). DFSInputStream, which has stored 

the datanode addresses for the first few blocks in the file, then connects to the first 

(closest) datanode for the first block in the file. Data is streamed from the datanode 

back to the client, which calls read() repeatedly on the stream (step 4). 

 
When the end of the block is reached, DFSInputStream will close the connection to the 

datanode, then find the best datanode for the next block (step 5). This happens 

transparently to the client, which from its point of view is just reading a continuous 

stream. 

Blocks are read in order with the DFSInputStream opening new connections to 

datanodes as the client reads through the stream. It will also call the namenode to 

retrieve the datanode locations for the next batch of blocks as needed. When the client 

has finished reading, it calls close() on the FSDataInputStream(step 6) 
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 One map task is created for each split which then executes map function for 

each record in the split. 

 It is always beneficial to have multiple splits, because time taken to process a 

split is small as compared to the time taken for processing of the whole input. 

When the splits are smaller, the processing is better load balanced since we are 

processing the splits in parallel. 

 However, it is also not desirable to have splits too small in size. When splits are 

too small, the overload of managing the splits and map task creation begins to 

dominate the total job execution time. 

 For most jobs, it is better to make split size equal to the size of an HDFS block 

(which is 64 MB, by default). 

 Execution of map tasks results into writing output to a local disk on the 

respective node and not to HDFS. 

 Reason for choosing local disk over HDFS is, to avoid replication which takes 

place in case of HDFS store operation. 

 Map output is intermediate output which is processed by reduce tasks to 

produce the final output. 

 Once the job is complete, the map output can be thrown away. So, storing it in 

HDFS with replication becomes overkill. 

 In the event of node failure before the map output is consumed by the reduce 

task, Hadoop reruns the map task on another node and re-creates the map 

output. 

 Reduce task don't work on the concept of data locality. Output of every map 

task is fed to the reduce task. Map output is transferred to the machine where 

 



 
 

 reduce task is running. 

 On this machine the output is merged and then passed to the user defined 

reduce function. 

 Unlike to the map output, reduce output is stored in HDFS (the first replica is 

stored on the local node and other replicas are stored on off-rack nodes). So, 

writing the reduce output 

 

b Write Short notes on Map Reduce UI and Hadoop Logs: 
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b How does a Map Reduce Model works with a Single Reduce task?  



 
 

  

 

 

 


