CMR Institute of Technology
Department of Computer Applications

IAT 4 — Answer Key

la
Describe any 4 characteristics (4 Vs of Big Data)
Characteristics of Big Data:
1. Volume
2. Velocity
3. Variety
4. Value
Volume: The main characteristic that makes data “big” is the sheer volume. It makes
no sense to focus on minimum storage units because the total amount of
information is
growing exponentially every year.
Variety: is one the most interesting developments in technology as more and
more information is digitized. Traditional data types (structured data) include things on
a bank statement like date, amount, and time.
Velocity is the frequency of incoming data that needs to be processed.
Value: Analysis add value to your business is measured.
b | Discuss the application of big data analytics
Table 1.1 Example analytics applications
Risk
Marketing Management | Government | Web Logistics | Other
Response Credit risk Tax avoidance | Web analytics | Demand Text
madeling modeling forecasting | analytics
Mt lift Market risk Social Social media | Supply chain | Busingss
madeling modeling security frawd | anahtics analytics process
analytics
Retention Operational Maoney Multivariate
madeling risk modeling laundering testing
Market basket | Fraud Terrorism
analysis detection detaction
Recommender
systems
Customer
segmentation
c | With a neat diagram, describe the working of analytical processing model

Interpretation
and
Evaluation

%

Data
Transformation

v of Operationa (binning, alpha to
Dumps of Operational Data sy
Understanding Data Cleaning
what data is :
needed for the Data —\: /
application Selection — Analytics
. : Transformed Application
8 H /'f.' ';'?-. Data
8 8 / . Preprocessed
Source Data Mining Data
Data Mart I
Figure 1.2 The Analytics Process Mode

Define the business problems to be solved

All source-data need to be identified that could be of potential interest.

All data to be gathered in a staging area

Basic exploratory analysis will be considered.

Data cleaning step to get rid of all inconsistencies

In the analytics step, an analytical model will be estimated on the preprocessed
and transformed data.

o hrwWNE

Once the model is built it will interpreted and evaluated by the business experts.

Mention the different types of data sources:

Transaction: - Transactional data consists of structured, low-level, detailed
information capturing the key characteristics of a customer transaction.

Un-Structured data: — are stored in form of text documents.
Qualitative, expert based data:-Subject matter expertise
Data-Poolers:- Dun & Bradstreet, Thomson Reuters

Social Media: Data from face book and twitter etc.

Calculate the Z-Score and detect the outlier for the following
data. Where mean = 40 Standard deviation = 10 and Data= 30 50
10 40 60 80

Standard
Observation | Mean Deviation | Z-Score
30 40 10 -1
50 40 10 1
10 40 10 -3
40 40 10 0
60 40 10 2
80 40 10 4

Any z-score greater than 3 or less than -3 is considered to be an outlier. Hence
the data 80 is outlier.

Various factors required for analytical model:

Business relevance

Statistical performance

Operational efficient

Economic cost

Local and International regulations and legislation

ARSI

A gond analytical model should satisfy several requirements, depend-
ing on the application arca. A first critical success factor is business
relevance. The analytical model should actually solve the business
problem for which it was developed. [t makes no sense to have a work-
ing analytical mode]l that got sidetracked from the original problem
statement. In order to achicve business relevance, it is of key impor-
tance that the business problem to be solved is appropriately defined.
qualified. and agreed upon by all parties involved at the outset of the
analysis.

A second criterion is statistical performance. The model showld
hawe statistical significance and predictive power. How this can be mieca-
sured will depend upon the type of analytics considered. For example,
in a dassification setting {chum. fraud). the model should have good
discrimination power. In a clustering setting. the custers should be as
homogenous as possible. Inm later chapters, we will extensively discuss
yarious measures to guantify this.

Depending on the application. analytical models should also be
interpretable and justifiable. Interpretability refers o understanding
the patterns that the analytical model captures. This aspect has a
certain degree of subjectivism. since interpretability may depend on
the business user’s knowledge. In many scttings, howewver, it is comn-
sidered to e a key regquirement. For example, in credit risk modeling
or medical diagnosis. interpretable models are absolutely needed to
gt pood insight into the underlying data patterns. In other settings,
such as response modeling and fraud detection,. having interpretable
models may be less of an issue. fusfiffcbility refers to the degree to
which a model corresponds to prior business knowledge and inmtuo-
ition.” For example. a model stating that a higher debt ratio results

in more creditvwortbhy clicnts may be interpretable, but is motb justifi-
able bBocause it comtradicts basic fimancial imntuition. Mote that botk
interpretability and justifiability often nmeod 1o be balanced against
statistical poerformance. Often one vwill observe that high performing

analytical meodels are incomprehensible and black box in natuare.
A popular example of this is neural networks, wihich are universal
approxinatars and are high performing. but offer no insight into the
underlying paticrns in the data. On the contrary. linear regression
mardels are very transparcnt and comprehensible. but offer ondy
limited muosdeling prowvser.

Amnalytical models should also be operaficnally officierrf. This refers to
the cfforts mcedoed to collect the data. preprocess it ovaluate the meodel.
and feed its outputs to the business application {e.g.. campaign man-
agement, capital calculatiom . Espedcally in a real-time online scoring
environment (e.g.. fraud detection) this may be a crudcial characteristic.
Operational efficicncy alsa entails the cifforts noeocded t© monitor and
backtest the muodel, and recstimate it when nocessary.

Another key attention point is the someeenic cosf moecded o set up
the analytical maodel. This incwdes the costs o gather and preprocess
the data. the costs o analyze the data., and the costs to put the resuli-
ing analytical models into production. In addition, the software costs
and human and computing resources should be taken imto acoowrt
here. It is important o do a thorough cost—benefit analysis at the start
of the project.

Finally, amalytical models should also compely with both local and
intermational regafatioen armd egisfatiorr. For example, in a coedit sk set-

3a

Discuss the critical components of hadoop with neat diagram

The two critical components of Hadoop are:

1. The Hadoop Distributed File System (HDFS). HDFS is the
storage system for a Hadoop cluster. When data lands in the cluster,
HDFS breaks it into pieces and distributes those pieces among the
different servers participating in the cluster. Each server stores just
a small fragment of the complete data set, and each piece of data is
replicated on more than one server.

2. MapReduce. Because Hadoop stores the entire dataset in small pieces
across a collection of servers, analytical jobs can be distributed, in par-
allel, to each of the servers storing part of the dawm. Each server evalu-
ates the question against its local fragment simultaneously and reports
its results back for collation into a comprehensive answer. MapReduce
is the agent that distributes the work and collects the results.

Both HDFS and MapReduce are designed to continue to work in the
face of system failures. HDFS continually monitors the data stored on
the cluster. If a server becomes unavailable, a disk drive fails, or data is
damaged, whether due to hardware or software problems, HDFS automati-
cally restores the data from one of the known good replicas stored elsewhere
on the cluster. Likewise, when an analysis job is running, MapReduce moni-
tors progress of each of the servers participating in the job. If one of them is
slow in returning an answer or fails before completing its work, MapReduce
automatically starts another instance of that task on another server that has
a copy of the data. Because of the way that HDFS and MapReduce work,
Hadoop provides scalable, reliable, and fault-tolerant services for data storage
and analysis at very low cost.

Compute Cluster

D5 Block 1
Data / [oFs Bec1
diatadata data dat DFS Block 1
s |

datadsts dats dats dats -~ |

| Results
datadats data data data | DF5 Block 2 ¥ R —
datadata data data data =T | _' :4. :-J :m:m
diatadata data data data — kin cimka riska data
DFs EII:H: T i i

distadats dats dats data
dlata data data data d‘“'& DFS Block 2
datadata data data data

datadata data data data
datadata data data data

| ciwtwointsduty dotedete | \
DF5 Block 3

? e ———

dists dets dets dats
oiats s dats dies
dats dets dats dats

| Map |
| —

What is predictive analysis? Why are they required?Discuss the leading trends of
predictive analysis.

®# Recommendation engines similar to those used in Nerflix and Amazon
that use past purchases and buying behavior to recommend new
purchases,

m Risk engines for a wide variety of business areas, including marker and
credit risk, catastrophic risk, and portfolio risk.

® Innovatdon engines for new product innovadon, drug discovery, and
consumer and fashion trends to predict potential new product formu-
lations and discoveries.

® Customer insight engines that integrate a wide variety of customer-
related info, including sentdment, behavior, and even emotions. Cus-
tomer insight engines will be the backbone in online and set-top box
advertisement targeting, customer loyalty programs o maximize cus-
tomer lifetime value, optimizing marketing campaigns for revenue lift,
and targeting individuals or companies at the right time to maximize
their spend.

® Optmizatdon engines that optimize complex interrelated operatons
and decisions that are too overwhelming for people to systemat-
cally handle at scales, such as when, where, and how to seek narural
resources to maximize output while reducing operational coss—
or what potental competitive strategies should be used in a global
business that takes into account the various political, economic, and
competitive pressures along with both internal and external opera-
tional capabilities.

4a

List and Explain the technical features of Hadoop

Hadoopis anopen source, Scalable, and Fault tolerantframework written inJava. It
efficiently processes large volumes of data on a cluster of commodity hardware. Hadoop
is not only a storage system but is a platform for large data storage as well as processing.

1. Open Source

Apache Hadoop is an open source project. It means its code can be modified according
to businessrequirements.

2. Distributed Processing

As data is stored in a distributed manner in HDFS across the cluster, data is processed in
parallel on a cluster of nodes.

3. Fault Tolerance

By default 3 replicas of each blockis stored across the cluster in Hadoop and it can be
changedalso as perthe requirement. Soif any node goes down, dataonthatnode can
be recovered from other nodes easily. Failures of nodes or tasks are recovered
automatically by the framework. This is how Hadoop is fault tolerant.

http://data-flair.training/blogs/data-blocks-hdfs-hadoop-distributed-file-system/
http://data-flair.training/blogs/learn-hadoop-hdfs-fault-tolerance/

4. Reliability

Duetoreplication of datainthe cluster, dataisreliably stored onthe cluster of machine
despitemachinefailures. Ifyourmachinegoesdown, thenalsoyourdatawillbe stored
reliably.

5. High Availability

Data s highly available and accessible despite hardware failure due to multiple copies of
data. Ifamachine orfewhardware crashes, then datawill be accessedfrom another
path.

Write notes on Crowdsourcing and Mobile business intelligence.

Crowdsourcing isagreatwayto capitalize ontheresourcesthatcanbuild
algorithms and predictive models.

Crowd sourcing is a costandtime effective method for moderating and curating data. It
has no over head costs and produces high quality results with little investment.

Crowdsourcing is a disruptive business model whose roots are intechnology
but is extending beyond technology to other areas.

There are various

types of crowdsourcing, such as crowd voting, crowd purchasing, wisdom of
crowds, crowd funding, and contests.

Take for example:

B 99designs.com/, which does crowdsourcing of graphic design
H agentanything.com/, which posts “missions” where agents vie for to
run errands

M 33needs.com/, which allows people to contribute to charitable
programs that make a social impact

Mobile Intelligence:

Analytics on mobile devices is what some refer to as putting Bl in your pocket.
Mobile drives straight to the heart of simplicity and ease of use that has been
amajor barrier to Bl adoption since day one. Mobile devices are a great leveling

field where making complicated actions easy is the name of the game.

Three elements that have impacted the viability of mobile BI:

1. Location—the GPS component and location . . . know where you

are in time as well as the movement.

2. It’s not just about pushing data; you can transact with your smart
phone based on information you get.

http://data-flair.training/blogs/hadoop-high-availability-tutorial/

3. Multimedia functionality allows the visualization pieces to really come
into play.

Three challenges with mobile Bl include:

1. Managing standards for rolling out these devices.

2. Managing security (always a big challenge).

3. Managing “bring your own device,” where you have devices both
ownedbythe companyanddevices ownedbytheindividual, both
Contributing to productivity.

5a | Explain the various open source technologies of Hadoop Eco-System.
Common
A set of components and interfaces for distributed filesystems and general /0
(serialization, Java RPC, persistent data structures).
Avro
Aserialization systemforefficient, cross-language RPC, andpersistentdatastorage.
MapReduce
A distributed data processing model and execution environment that runs on large
clusters ofcommodity machines.
HDFS
A distributed filesystem that runs on large clusters of commodity machines.
Pig
Adata flow language and execution environment for exploring very large datasets.
Pig runs on HDFS and MapReduce clusters.
Hive
Adistributed datawarehouse. Hive manages data stored in HDFS and provides a
query language based on SQL (and which is translated by the runtime engine to
MapReduce jobs) for querying the data.
HBase
Adistributed, column-oriented database. HBase usesHDFSforitsunderlying
storage, and supports both batch-style computations using MapReduce and point
queries (randomreads).
ZooKeeper
A distributed, highly available coordination service. ZooKeeper provides primitives such
as distributed locks that can be used for building distributed applications.
Sqoop
A tool for efficiently moving data between relational databases and HDFS.

b Discuss the difficulties of implementing storage and analysis support for big

data.

Data Storage and Analysis

The problem is simple: although the storage capacities of hard drives have increased
massively over the years, access speeds—the rate at which data can be read from drives—
have not kept up. One typical drive from 1990 could store 1,370 ME of data and had a
transfer speed of 4.4 MB/s," so you could read all the data from a full drive in around
five minutes. Over 20 years later, 1-terabyte drives are the norm, but the transfer speed
is around 100 MB/s, so it takes more than two and a half hours to read all the data off
the disk.

This is a long time to read all data on a single drive—and writing is even slower. The

obvious way to reduce the time is to read from multiple disks at once. Imagine if we had
100 drives, cach holding one hundredth of the data. Working in parallel, we could read
the data in under two minutes.

Using only one hundredth of a disk may seem wasteful. But we can store 100 datasets,
each of which is 1 terabyte, and provide shared access to them. We can imagine that the
users of such a system would be happy to share access in return for shorter analysis
times, and statistically, that their analysis jobs would be likely to be spread over time,
so they wouldn't interfere with cach other too much.

There’s more to being able to read and write data in parallel to or from multiple disks,
though.

The first problem to solve is hardware failure: as soon as you start using many pieces of
hardware, the chance that one will fail is fairly high. A commaon way of avoiding data
loss is through replication: redundant copies of the data are kept by the system so that
in the event of failure, there is another copy available. This is how RAID works, for
instance, although Hadoops filesystem, the Hadoop Distributed Filesystem (HDFS),
takes a slightly different approach, as you shall see later.

The second problem is that most analysis tasks need to be able to combine the data in
some way, and data read from one disk may need to be combined with data from any
of the other 99 disks. Various distributed systems allow data to be combined from mul-
tiple sources, but doing this correctly is notoriously challenging. MapReduce provides
a programming model that abstracts the problem from disk reads and writes, trans-
forming it into a computation over sets of keys and values. We look at the details of this
model in later chapters, but the important point for the present discussion is that there
are two parts to the computation—the map and the reduce—and it’s the interface be-
tween the two where the “mixing” occurs. Like HDFS, MapReduce has built-in
reliability.

6 a

List the differences between map reduce and RDBMs

Relational Database Management Systems

Why can’t we use databases with lots of disks to do large-scale analysis? Why is Hadoop

Table 1-1. RDBMS comparad to MapReduc
Traémceal 08NS Vapfetuce

Deta size

Access deraitive 08 by Larh
Updates Tea¢ 394 wrie Ty e T e —

Tramactoms

Grid Computing:

The High Performance Computing (HPC) and Grid Computing communities have
been doing large-scale data processing for years, using such APIs as Message Passing
Interface (MPI). Broadly, the approach in HPC is to distribute the work across a cluster of
machines, which access asharedfilesystem, hosted by a SAN. Thisworkswell for
predominantly compute-intensive jobs, butbecomesaproblemwhennodesneedto
access larger data volumes (hundreds of gigabytes, the point at which MapReduce really
startsto shine), since the network bandwidth is the bottleneck and compute nodes
becomeidle.

MapReducetriesto collocate the datawiththe compute node, sodataaccessisfast
sinceitislocal. Thisfeature, known as datalocality, isatthe heartof MapReduce andis
the reason for its good performance. Recognizing that network bandwidth is the most
precious resource in adata center environment (it is easy to saturate network links by
copying data around), MapReduce implementations go to great lengths to conserve it by
explicitly modelling network topology. Notice that this arrangement does not preclude
high-CPU analyses inMapReduce

Volunteer Computing:

Volunteer computing projects work by breaking the problem they are trying to

solveinto chunks called work units, which are sentto computers around the world to be
analyzed. For example, a SETI@home work unitis about 0.35 MB of radio telescope
data, and takes hours or days to analyze on a typical home computer. When the analysis
is completed, the results are sent back to the server, and the client gets another work
unit. As a precaution to combat cheating, each work unit is sent to three different
machines and needs at least two results to agree to be accepted. Although SETI@home
may be superficially similar to MapReduce (breaking a problem into independent pieces

to be worked on in parallel), there are some significant differences.

The SETI@home problem is very CPU-intensive, which makes it suitable for
running on hundreds of thousands of computers across the world,8 since the time to
transfer the work unit is dwarfed by the time to run the computation on it. Volunteers
are donating CPU cycles, not bandwidth. MapReduce is designed to run jobs that last
minutes or hours on trusted, dedicated hardware running in a single data center with
very high aggregate bandwidth interconnects.

7a

What is a memory block in HDFS? Explain block report, replication factor
and rack awareness with respect to data node.

HDFS concepts:

A disk has a block size, which is the minimum amount of data that it can read or write.
Filesystems for a single disk build on this by dealing with data in blocks, which are an
integral multiple of the disk block size. Filesystem blocks are typically afewkilobytesin
size, while disk blocks are normally 512 bytes. This is generally transparent to the
filesystem user who is simply reading or writing a file — of whatever length.
However,there are tools to perform filesystem maintenance, such as df and fsck, that
operate on the filesystem block level.

HDFS, too, hasthe conceptofablock, butitisamuchlargerunit-64 MB by default.Like
inafilesystemforasingle disk, filesinHDFS are brokeninto block-sized chunks,which
are stored as independent units.

Name nodes and Data nodes:

An HDFS cluster has two types of hode operating in a master-worker pattern: a
namenode (the master) and a number of datanodes (workers). The namenode manages
the filesystem namespace. It maintains the filesystem tree and the metadata for all the
filesanddirectoriesinthetree. Thisinformationis stored persistentlyonthelocaldiskin
the form of twofiles: the namespace image andthe editlog. The namenode alsoknows
the datanodes on which all the blocks for a given file are located, however, it doesnot
store block locations persistently, since this information is reconstructed fromdatanodes
when the systemstarts.

A client accesses the filesystem on behalf of the user by communicating with the
namenode and datanodes. The client presents a POSIX-like filesystem interface, so the
user code does not need to know about the namenode and datanode to
function.Datanodes are the workhorses of the filesystem. They store and retrieve blocks
when they are told to (by clients or the namenode), and they report back to the
namenode periodically with lists of blocks that they are storing.

Discuss any 4 HDFS commands.

appendToFile

Usage: hdfs dfs -appendToFile <localsrc> ... <dst>
cat

Usage: hdfs dfs -cat URI [URI ...]

chgrp

Usage: hdfs dfs -chgrp [-R] GROUP URI [URI ...]
chmod

Usage: hdfs dfs -chmod [-R] <MODE[,MODE]... | OCTALMODE> URI [URI ..]

8 a

Explain the architectural changes that are needed while replacing active
name node with stand by name node.

Namenode: Namenode holdsthe metadataforthe HDFSlike Namespace
information, block informationetc. Wheninuse, allthisinformationis storedinmain
memory. Butthese information also stored in disk for persistence storage.

Namenode
Reads at startup and merges
with edit logs

Write the mbdification
to file/system

fsimage
edit logs

The above image shows how Name Node stores information in disk.

Two different files are fsimage - Its the snapshot of the filesystem when namenode

started

Editlogs- Itsthe sequence of changes made tothefilesystem afternamenode started

Onlyintherestartof namenode, editlogs are applied to fsimage to get the latest
snapshot of the file system. But namenode restart are rare in production clusters which
meanseditlogs cangrowvery largeforthe clusterswhere namenoderunsforalong
period of time. The following issues we will encounter in this situation.

Editlog become very large , which will be challenging to manage it
Namenode restarttakes long time because lot of changes has to be merged.

Inthe case of crash, we will lost huge amount of metadata since fsimage is very old
So to overcome this issues we need a mechanism which will help us reduce the edit log
sizewhichis manageable and have up to date fsimage ,so thatload onnamenode
reduces.It'sverysimilartoWindows Restore point, whichwillallowustotake snapshot
ofthe OS sothatif something goeswrong, we can fallback to the last restore point.

So now we understood NameNode functionality and challenges to keep the meta data
up to date.So what s this all have to with Seconadary Namenode?

Secondary Namenode:

Secondary Namenode helpsto overcome the above issues by taking over responsibility
of merging editlogs with fsimage from the namenode.

Secondary | Queryforeditlogs ——{ Namenode
Namenade in regualar intervals

update fsimage
with editlogs

copy the updated
image back to
namenode

The above figure shows the working of Secondary Namenode

1. Itgetsthe editlogsfromthe namenode inregularintervals and appliestofsimage

Once it has new fsimage, it copies back to namenode

3. Namenodewillusethisfsimageforthe nextrestart,whichwillreducethe startup
time

n

Secondary Namenode whole purposeisto have a checkpointin HDFS. Its just a helper
node for namenode.That’s why it also known as checkpoint node inside the community.

With a neat diagram, explain the anatomy of reading data from a file in
HDFS.

To get an idea of how data flows between the client interacting with HDFS, the
namenode and the datanodes, consider Figure which shows the main sequence of
events when reading afile.

HDFS

: oD FSData namenode
- InputStream
client JVM '

client node

. istri 2: get block locations
: > [F}:Isetg;]sl:gﬂ ‘ Y NameNode
client .

4read | T, Siread

datanode datanode datanode

The client opens the file it wishes to read by calling open() on the FileSystem object,
whichfor HDFS is aninstance of DistributedFileSystem (step 1 in Figure).

DistributedFileSystem calls the namenode, using RPC, to determine the locations of
the blocks for the first few blocks in the file (step 2).

For each block, the namenode returns the addresses of the datanodes that have a copy
ofthatblock. Furthermore, the datanodes are sorted according to their proximity to the
node. If the clientis itself a datanode (in the case of a MapReduce task, for instance),
then it will read from the local datanode, if it hosts a copy of the block.

The DistributedFileSystem returns an FSDatalnputStream (an input stream that supports
file seeks) to the client for it to read data from. FSDatalnputStream in turn wraps a
DFSInputStream, which manages the datanode and namenode 1/O.

The clientthen calls read() onthe stream (step 3). DFSInputStream, which has stored
the datanode addressesforthefirstfewblocksinthefile, then connectstothefirst
(closest) datanode forthefirstblockinthefile. Datais streamedfromthe datanode
back to the client, which calls read() repeatedly on the stream (step 4).

Whenthe end of the blockisreached, DFSInputStream will close the connectiontothe
datanode, then find the best datanode for the next block (step 5). This happens
transparently to the client, which from its point of view is just reading a continuous
stream.

Blocks are read in order with the DFSInputStream opening new connections to
datanodes as the client reads through the stream. It will also call the namenode to
retrieve the datanode locationsfor the next batch of blocks as needed. Whenthe client
has finished reading, it calls close() on the FSDatalnputStream(step 6)

9a

2: get new application
MapReduce |1: runjob | 2 »
program [T | 4: submit application <) ResourceManager
»
client JUM
client node 4

5a: start container .+

" resource manager node

8 allocate resources
NodeManager
3: copy job
Tesources

5b: launch

6:initialize
Job%a) MRAppMaster &8

a:start
container

NodeManager

<" node manager node 9b: Iaun(hg
v 7: retrieve L 2
B input splits task JVM
Shared 10: retrieve job resources
Filesystem < l YarnChild
(e.g., HDFS) :
1:run
v
MapTask
or
ReduceTask
node manager node

One map task is created for each split which then executes map function for
each record in the split.

Itis always beneficial to have multiple splits, because time taken to process a
splitis small as compared to the time taken for processing of the whole input.
When the splits are smaller, the processing is better load balanced since we are
processing the splits in parallel.

However, itisalso not desirable to have splitstoo smallin size. When splits are
too small, the overload of managing the splits and map task creation begins to
dominate the total job execution time.

For most jobs, it is better to make split size equal to the size of an HDFS block
(which is 64 MB, by default).

Execution of map tasks results into writing output to a local disk on the
respective node and not to HDFS.

Reason for choosing local disk over HDFS is, to avoid replication which takes
place in case of HDFS store operation.

Map output is intermediate output which is processed by reduce tasks to
produce the final output.

Once the jobis complete, the map output can be thrown away. So, storing itin
HDFS with replication becomes overkill.

In the event of node failure before the map output is consumed by the reduce
task, Hadoop reruns the map task on another node and re-creates the map
output.

Reduce task don't work on the concept of data locality. Output of every map
task is fed to the reduce task. Map output is transferred to the machine where

reduce task is running.

On this machine the output is merged and then passed to the user defined
reduce function.

Unlike to the map output, reduce output is stored in HDFS (the first replica is
stored on the local node and other replicas are stored on off-rack nodes). So,

writing the reduce output

Write Short notes on Map Reduce Ul and Hadoop Logs:

The MapReduce Web Ul

Hadoop comes with a web UI for viewing information about your jobs. It is useful for
following a job's progress while it is running, as well as finding job statistics and logs
after the job has completed. You can find the UI at http://resource-manager-host:
8088/.

Retrieving the Results

Once the job is finished, there are various ways to retrieve the results. Each reducer
produces one output file, so there are 30 part files named part-r-00000 to part-
r-00029 in the max-temp directory.

As their names suggest, a good way to think of these “part” files is as
parts of the max-temp “file”

If the output is large (which it isn't in this case), it is important to have

W multiple parts so that more than one reducer can work in parallel.
Usually, if a file is in this partitioned form, it can still be used easily
enough—as the input to another MapReduce job, for example. In
some cases, you can exploit the structure of multiple partitions to do
a map-side join, for example (see “Map-Side Joins™ on page 269).

This job produces a very small amount of output, so it is convenient to copy it from
HDFS to our development machine. The -getmerge option to the hadoop fs command
is useful here, as it gets all the files in the directory specified in the source pattern and
merges them into a single file on the local filesystem:

Table 5-2. Types of Hadoop logs
Logs Primary audience Description Further information

System daemon logs Administrators Each Hadoop daemon producesalogfile (us- “System log-
ing log4j) and another file that combines files” on page 307 and
standard out and error. Writteninthe direc- ~ "Logging” on page 349.
tory defined by the HADOOP_LOG_DIRen-

vironment variable.
HDFS audit logs Administrators A log of all HDFS requests, tumed offbyde- “Audit Log-
fault. Written to the namenode’s log, al- ging” on page 344,

though this is configurable.

Logs Primary audience Description Further information
MapReduce job history logs ~ Users Alogofthe events (such as task completion) “Job His-
that occur in the course of running a job. tory” on page 166.
Saved centrally on the jobtracker, and in the
job's output directory ina_logs/histary sub-
directory.
MapReduce task logs Users Each tasktracker child process produces a This section.
logfile using log4j (called sysfog), a file for
data sent to standard out (stdour), and a file
for standard error (stderr). Written in the
useriogssubdirectoryofthedirectory defined
by the HADOOP_LOG_DIR environment
variable.

10

Example 2-3. Mapper for the maximum temperature example

import java.io.IOException;

import org.apache.hadoop.1lo.Inthritable;
import org.apache.hadoop.i0.Longlritable;
import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce .Mapper;

public class MaxTemperatureMapper
extends Mapper<LongWritable, Text, Text, IntWritables> {

private static final int MISSING = 9999;

@dverride
public void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {

String line = value.toString();

String year = line.substring(i5, 19);

int airTemperature;

if (line.charAt(87) == '+') { // parselnt doesn’t like leading plus signs
alrTemperature = Integer.parselnt({line.substring(28, 92));

} else {
airTemperature = Integer.parselnt(line.substring(87, 92));

}

String quality = line.substring(92, 33);

if (airTemperature != MISSING 88 quality.matches("[01459]")) {
context.write(new Text(year), new IntWritable(airTemperature));
}
}
}

Example 2-4. Reducer for the maximum temperature example

import java.io.IOException;

import org.apache.hadoop.io.Intiritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

public class MaxTemperatureReducer
extends Reducer<Text, IntWritable, Text, IntWritable> {

1d

public void reduce(Text key, Iterable<IntWritable> values, Context context)
throws IOException, InterruptedException {

int maxValue = Integer.MIN_VALUE;
for (IntWritable value : values) {

maxValue = Math.max(maxValue, value.get());
}

context.write(key, new IntWritable(maxValue));
}
1

Example 2-5. Application to find the maximum temperature in the weather dataset

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce. Job;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce. lib.output.FileOutputFormat;

public class MaxTemperature {

public static void main(String[] args) throws Exception {
if (args.length != 2) {
System.err.println("Usage: MaxTemperature <input path> <output path>");
System.exit(-1);
}

Job job = new Job();
job.setJarByClass(MaxTenperature.class);
job.setJobName("Max temperature”);

FileInputFormat.addInputPath(job, new Path(args[®]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));

job.setMapperClass(MaxTemperatureMapper.class);
job.setReducerClass(MaxTemperatureReducer.class);

job.setOutputKeyClass(Text.class);
job.setOutputValueClass{IntWritable.class);

System.exit(job.waitForCompletion(true) ? 0 : 1);
}
)

How does a Map Reduce Model works with a Single Reduce task?

Figure 2-3. MapReduce data flow with a single reduce task

The number of reduce tasks is not governed by the size of the input, but instead is
specified independently. In “The Default MapReduce Job” on page 214, you will see how
to choose the number of reduce tasks for a given job.

When there are multiple reducers, the map tasks partition their output, cach creating
ong partition for cach reduce task. There can be many keys (and their associated values)
in cach partition, but the records for any given key arc all in a single partition. The
partitioning can be controlled by a user-defined partitioning function, but normally the
default partitioner—which buckets keys vsing & hash function—works very well.

