

CMR

INSTITUTE OF

TECHNOLOGY

USN

Internal Assesment Test –IV, February 2022

Sub: MACHINE LEARNING Code: 18MCA53

Date: 02-02-2022 Duration: 90 mins Max Marks: 50 Sem: V Branch: MCA

Note : Answer FIVE FULL Questions, choosing ONE full question from each Module Marks
OBE

CO RBT

Q1

Part-I

Define a Well-Posed Learning Problem. Quote some successful applications of

machine learning.

10 CO1 L2

Q2

or

Elaborate the design choice of choosing the training experience and choosing the

Target Function while designing a learning system.

10 CO1 L2

Q3

Part-II
Write FIND-S algorithm and discuss the issues with the algorithm for Enjoy Sport problem.

10 CO3 L2

Q4

or
Consider the following training example.

Example Sky AirTemp Humidity Wind Water Forecast EnjoySport

1 Sunny Warm Normal Strong Warm Same Yes

2 Sunny Warm High Strong Warm Same Yes

3 Rainy Cold High Strong Warm Change No

4 Sunny Warm High Strong Cool Change Yes

Show the general and specific boundaries of the version space after applying candidate elimination

algorithm.

10 CO3 L2

Q5

Part-III

 Draw decision tree for the given dataset and calculate the entropy and information gain.

Instance Classification a1 a2

1 + T T

2 + T T

3 - T F

4 + F F

5 - F T

6 - F T

10 CO3 L2

Q 6

or
Design the decision tree for the following dataset and predict whether Golf will be played on the day.

Day Outlook Temperature Humidity Wind Play Golf

D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No

D3 Overcast Hot High Weak Yes

D4 Rain Mild High Weak Yes

D5 Rain Cool Normal Weak Yes

D6 Rain Cool Normal Strong No

D7 Overcast Cool Normal Strong Yes

D8 Sunny Mild High Weak No

D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

D12 Overcast Mild High Strong Yes

D13 Overcast Hot Normal Weak Yes

D14 Rain Mild High Strong No

10 CO4 L3

CMR

INSTITUTE OF

TECHNOLOGY

USN

Internal Assesment Test –IV, February 2022

Sub: MACHINE LEARNING Code: 18MCA53

Date: 02-02-2022 Duration: 90 mins Max Marks: 50 Sem: V Branch: MCA

Note : Answer FIVE FULL Questions, choosing ONE full question from each Module Marks
OBE

CO RBT

Q7

Part-IV

Write the ID3 algorithm. Explain the appropriate problems for decision tree learning.
10 CO3 L3

Q8

or

What is linearly in separable problem? Design a two-layer Back propagation network

for feed forward network.

10 CO3 L2

Q9

Part-V

What is the perceptron training rule. Write the Gradient decent Algorithm and visualize

the Hypothesis space for gradient decent rule.

10 CO3 L3

Q10

or

Write the Back propagation algorithm for feed forward network with example.
10 CO3 L2

Answer Key

Q1

Part-I

Define a Well-Posed Learning Problem. Quote some successful applications of machine learning.

Well-Posed Learning Definition: A computer program is said to learn from experience E with respect to some class of tasks T

and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.

Examples:

Checkers Game: A computer program that learns to play checkers might improve its performance as measured by its ability to

win at the class of tasks involving playing checkers game, through experience obtained by playing games against itself:

checkers learning problem:
 Task T: playing checkers
 Performance measure P: percent of games won against opponents
 Training experience E: playing practice games against itself

A handwriting recognition learning problem:
 Task T: recognizing and classifying handwritten words within images
 Performance measure P: percent of words correctly classified

 Training experience E: a database of handwritten words with given classifications

A robot driving learning problem:
 Task T: driving on public four-lane highways using vision sensors

 Performance measure P: average distance travelled before an error (as judged by human overseer)

 Training experience E: a sequence of images and steering commands recorded while observing a human driver

Q2

DESIGNING A LEARNING SYSTEM

The basic design issues and approaches to machine learning are illustrated by designing a program to learn to play

checkers, with the goal of entering it in the world checkers tournament
1. Choosing the Training Experience
2. Choosing the Target Function
3. Choosing a Function Approximation Algorithm

1. Estimating training values
2. Adjusting the weights

1. Choosing the Training Experience

 The first design choice is to choose the type of training experience from which the system will learn.

 The type of training experience available can have a significant impact on success or failure of the learner.

There are three attributes which impact on success or failure of the learner

1. Whether the training experience provides direct or indirect feedback regarding the choices made by the performance

system.

For example, in checkers game:
In learning to play checkers, the system might learn from direct training examples consisting of individual checkers

board states and the correct move for each.

Indirect training examples consisting of the move sequences and final outcomes of various games played. The

information about the correctness of specific moves early in the game must be inferred indirectly from the fact that the

game was eventually won or lost.

Here the learner faces an additional problem of credit assignment, or determining the degree to which each move in the

sequence deserves credit or blame for the final outcome.

2. The degree to which the learner controls the sequence of training examples

For example, in checkers game:

The learner might depends on the teacher to select informative board states and to provide the correct move for each.

Alternatively, the learner might itself propose board states that it finds particularly confusing and ask the teacher for

the correct move.

The learner may have complete control over both the board states and (indirect) training classifications, as it does when

it learns by playing against itself with no teacher present.

3. How well it represents the distribution of examples over which the final system performance P must be measured

For example, in checkers game:

In checkers learning scenario, the performance metric P is the percent of games the system wins in the world

tournament.

If its training experience E consists only of games played against itself, there is a danger that this training experience

might not be fully representative of the distribution of situations over which it will later be tested.

It is necessary to learn from a distribution of examples that is different from those on which the final system will be

evaluated.

2. Choosing the Target Function

The next design choice is to determine exactly what type of knowledge will be learned and how this will be used by the

performance program.

Let’s consider a checkers-playing program that can generate the legal moves from any board state.

The program needs only to learn how to choose the best move from among these legal moves. We must learn to choose among

the legal moves, the most obvious choice for the type of information to be learned is a program, or function, that chooses the

best move for any given board state.

1. Let ChooseMove be the target function and the notation is

ChooseMove : B→ M
which indicate that this function accepts as input any board from the set of legal board states B and produces as output

some move from the set of legal moves M.

ChooseMove is a choice for the target function in checkers example, but this function will turn out to be very difficult

to learn given the kind of indirect training experience available to our system

2. An alternative target function is an evaluation function that assigns a numerical score to any given board state
Let the target function V and the notation

V:B →R

which denote that V maps any legal board state from the set B to some real value. Intend for this target function V to

assign higher scores to better board states. If the system can successfully learn such a target function V, then it can

easily use it to select the best move from any current board position.

Let us define the target value V(b) for an arbitrary board state b in B, as follows:
 If b is a final board state that is won, then V(b) = 100
 If b is a final board state that is lost, then V(b) = -100
 If b is a final board state that is drawn, then V(b) = 0
 If b is a not a final state in the game, then V(b) = V(b'),

Where b' is the best final board state that can be achieved starting from b and playing optimally until the end of the game

3. Choosing a Function Approximation Algorithm

In order to learn the target function f we require a set of training examples, each describing a specific board state b and the

training value Vtrain(b) for b.

Each training example is an ordered pair of the form (b, Vtrain(b)).

For instance, the following training example describes a board state b in which black has won the game (note x2 = 0 indicates

that red has no remaining pieces) and for which the target function value Vtrain(b) is therefore +100.

((x1=3, x2=0, x3=1, x4=0, x5=0, x6=0), +100)

Function Approximation Procedure

1. Derive training examples from the indirect training experience available to the learner
2. Adjusts the weights wi to best fit these training examples

1. Estimating training values

A simple approach for estimating training values for intermediate board states is to assign the training value of

Vtrain(b) for any intermediate board state b to be V(Successor(b))

Where ,
 ̂

V is the learner's current approximation to V

 Successor(b) denotes the next board state following b for which it is again the program's turn to move

Rule for estimating training values
Vtrain(b) ← V (Successor(b))

2. Adjusting the weights

Specify the learning algorithm for choosing the weights wi to best fit the set of training examples {(b, Vtrain(b))}

A first step is to define what we mean by the bestfit to the training data.

One common approach is to define the best hypothesis, or set of weights, as that which minimizes the squared error E

between the training values and the values predicted by the hypothesis.

Several algorithms are known for finding weights of a linear function that minimize E. One such algorithm is called the least

mean squares, or LMS training rule. For each observed training example it adjusts the weights a small amount in the

direction that reduces the error on this training example

LMS weight update rule :- For each training example (b, Vtrain(b))
̂

Use the current weights to calculate V (b)
For each weight wi, update it as

̂

wi ← wi + ƞ (Vtrain (b) - V(b)) xi

Here ƞ is a small constant (e.g., 0.1) that moderates the size of the weight update.

Working of weight update rule

 ̂

When the error (Vtrain(b)- V(b)) is zero, no weights are changed.

̂ ̂

When (Vtrain(b) - V(b)) is positive (i.e., when V(b) is too low), then each weight
is increased in proportion to the value of its corresponding feature. This will raise

̂
the value of V(b), reducing the error.

If the value of some feature xi is zero, then its weight is not altered regardless of the error, so that the only weights updated are

those whose features actually occur on the training example board.

Q3

Part-II
Write FIND-S algorithm and discuss the issues with the algorithm for Enjoy Sport problem.

FIND-S Algorithm

1. Initialize h to the most specific hypothesis in H
2. For each positive training instance x

For each attribute constraint ai in h

If the constraint ai is satisfied by x

Then do nothing

Else replace ai in h by the next more general constraint that is satisfied by x 3. Output hypothesis h

Unanswered by FIND-S

1. Has the learner converged to the correct target concept?
2. Why prefer the most specific hypothesis?
3. Are the training examples consistent?
4. What if there are several maximally specific consistent hypotheses?

Q4

CANDIDATE-ELIMINTION algorithm begins by initializing the version space to the set of all hypotheses in H;

Initializing the G boundary set to contain the most general hypothesis in H G0 ?, ?, ?, ?, ?, ?

Initializing the S boundary set to contain the most specific (least general) hypothesis S0 , , , , ,

 When the second training example is observed, it has a similar effect of generalizing S further to S2, leaving G again

unchanged i.e., G2 = G1 = G0

Consider the third training example.

Consider the fourth training example

After processing these four examples, the boundary sets S4 and G4 delimit the version space of all hypotheses consistent

with the set of incrementally observed training examples.

Q5

Part-III

 Draw decision tree for the given dataset and calculate the entropy and information gain.

Instance Classification a1 a2

1 + T T

2 + T T

3 - T F

4 + F F

5 - F T

6 - F T

Q 6

or
Design the decision tree for the following dataset and predict whether Golf will be played on the day.

Day Outlook Temperature Humidity Wind Play Golf

D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No

D3 Overcast Hot High Weak Yes

D4 Rain Mild High Weak Yes

D5 Rain Cool Normal Weak Yes

D6 Rain Cool Normal Strong No

D7 Overcast Cool Normal Strong Yes

D8 Sunny Mild High Weak No

D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

D12 Overcast Mild High Strong Yes

D13 Overcast Hot Normal Weak Yes

 D14 Rain Mild High Strong No

Q7

Issues in learning decision trees include
1 Avoiding Overfitting the Data

2 Reduced error pruning

3 Rule post-pruning

4 Incorporating Continuous-Valued Attributes

5 Alternative Measures for Selecting Attributes

6 Handling Training Examples with Missing Attribute Values

7 Handling Attributes with Differing Costs

 Avoiding Overfitting the Data

8 The ID3 algorithm grows each branch of the tree just deeply enough to perfectly classify the training examples

but it can lead to difficulties when there is noise in the data, or when the number of training examples is too

small to produce a representative sample of the true target function. This algorithm can produce trees that overfit

the training examples.

How can it be possible for tree h to fit the training examples better than h', but for it to perform more poorly over

subsequent examples?
9 Overfitting can occur when the training examples contain random errors or noise
10 When small numbers of examples are associated with leaf nodes.

Approaches to avoiding overfitting in decision tree learning

11 Pre-pruning (avoidance): Stop growing the tree earlier, before it reaches the point where it perfectly classifies

the training data
12 Post-pruning (recovery): Allow the tree to overfit the data, and then post-prune the tree

Criterion used to determine the correct final tree size

13 Use a separate set of examples, distinct from the training examples, to evaluate the utility of post-pruning

nodes from the tree

14 Use all the available data for training, but apply a statistical test to estimate whether expanding (or pruning) a

particular node is likely to produce an improvement beyond the training set

15 Use measure of the complexity for encoding the training examples and the decision tree, halting growth of the

tree when this encoding size is minimized. This approach is called the Minimum Description Length

MDL – Minimize : size(tree) + size (misclassifications(tree))

Reduced-Error Pruning

16 Reduced-error pruning, is to consider each of the decision nodes in the tree to be candidates for pruning

17 Pruning a decision node consists of removing the subtree rooted at that node, making it a leaf node, and

assigning it the most common classification of the training examples affiliated with that node

18 Nodes are removed only if the resulting pruned tree performs no worse than-the original over the validation

set.

19 Reduced error pruning has the effect that any leaf node added due to coincidental regularities in the training set

is likely to be pruned because these same coincidences are unlikely to occur in the validation set

2. Incorporating Continuous-Valued Attributes

Continuous-valued decision attributes can be incorporated into the learned tree.

There are two methods for Handling Continuous Attributes
20 Define new discrete valued attributes that partition the continuous attribute value into a discrete set of intervals.
E.g., {high ≡ Temp > 35º C, med ≡ 10º C < Temp ≤ 35º C, low ≡ Temp ≤ 10º C}

21 Using thresholds for splitting nodes
e.g., A ≤ a produces subsets A ≤ a and A > a

What threshold-based Boolean attribute should be defined based on Temperature?

22 Pick a threshold, c, that produces the greatest information gain

23 In the current example, there are two candidate thresholds, corresponding to the values of Temperature at

which the value of PlayTennis changes: (48 + 60)/2, and (80 + 90)/2.

24 The information gain can then be computed for each of the candidate attributes, Temperature >54, and

Temperature >85 and the best can be selected (Temperature >54)

2. Alternative Measures for Selecting Attributes

• The problem is if attributes with many values, Gain will select it ?

• Example: consider the attribute Date, which has a very large number of possible values. (e.g., March 4, 1979).

• If this attribute is added to the PlayTennis data, it would have the highest information gain of any of the

attributes. This is because Date alone perfectly predicts the target attribute over the training data. Thus, it

would be selected as the decision attribute for the root node of the tree and lead to a tree of depth one, which

perfectly classifies the training data.

• This decision tree with root node Date is not a useful predictor because it perfectly separates the training data,

but poorly predict on subsequent examples.

3. Handling Training Examples with Missing Attribute Values

The data which is available may contain missing values for some attributes Example: Medical

diagnosis
 <Fever = true, Blood-Pressure = normal, …, Blood-Test = ?, …>
 Sometimes values truly unknown, sometimes low priority (or cost too high)

Strategies for dealing with the missing attribute value

 If node n test A, assign most common value of A among other training examples sorted to node n
 Assign most common value of A among other training examples with same target value

 Assign a probability pi to each of the possible values vi of A rather than simply assigning the most common

value to A(x)

5. Handling Attributes with Differing Costs

 In some learning tasks the instance attributes may have associated costs.

 For example: In learning to classify medical diseases, the patients described in terms of attributes such as

Temperature, BiopsyResult, Pulse, BloodTestResults, etc.

 These attributes vary significantly in their costs, both in terms of monetary cost and cost to patient comfort

Decision trees use low-cost attributes where possible, depends only on high-cost attributes only when needed to

produce reliable classifications.

Q8

or

What is linearly in separable problem? Design a two-layer Back propagation network for feed forward network.

Q9
• Perceptron learning converges to a consistent model if D (training set) is linearly separable.

• If the data is not linearly separable than this will not converge.

• If the training examples are not linearly separable, the delta rule converges toward a best-fit

approximation to the target concept.

• The key idea behind the delta rule is to use gradient descent to search the hypothesis space of possible

weight vectors to find the weights that best fit the training examples.

• Gradient descent search determines a weight vector that minimizes E by starting with an arbitrary initial

weight vector, then repeatedly modifying it in small steps.

• At each step, the weight vector is altered in the direction that produces the steepest descent along the

error surface depicted in above figure. This process continues until the global minimum error is reached.

Derivation of the Gradient Descent Rule

How to calculate the direction of steepest descent along the error surface?
The direction of steepest can be found by computing the derivative of E with respect to each component

of the vector w⃗⃗⃗. This vector derivative is called the gradient of E with respect to w⃗⃗⃗ , written as

The gradient specifies the direction of steepest increase of E, the training rule for gradient

descent is

• Here η is a positive constant called the learning rate, which determines the step size in the

gradient descent search.

• The negative sign is present because we want to move the weight vector in the direction

that decreases E.

This training rule can also be written in its component form

Q10

or

Write the Back propagation algorithm for feed forward network with example.

