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Q1 

Part-I 

Define a Well-Posed Learning Problem. Quote some successful applications of 

machine learning. 

10 CO1 L2 

 

Q2 

or 

Elaborate the design choice of choosing the training experience and choosing the 

Target Function while designing a learning system. 

10 CO1 L2 

 

Q3 

Part-II 
Write FIND-S algorithm and discuss the issues with the algorithm for Enjoy Sport problem. 

 
10 CO3 L2 

 

Q4 

or 
Consider the following training example.  

Example Sky AirTemp Humidity Wind Water Forecast EnjoySport 

1 Sunny Warm Normal Strong Warm Same Yes 

2 Sunny Warm High Strong Warm Same Yes 

3 Rainy Cold High Strong Warm Change No 

4 Sunny Warm High Strong Cool Change Yes 

 

Show the general and specific boundaries of the version space after applying candidate elimination 

algorithm. 

 

10 CO3 L2 

 

Q5 

Part-III 

 Draw decision tree for the given dataset and calculate the entropy and information gain. 

Instance Classification a1 a2 

1 + T T 

2 + T T 

3 - T F 

4 + F F 

5 - F T 

6 - F T 
 

10 CO3 L2 

 

Q 6 

or 
Design the decision tree for the following dataset and predict whether Golf will be played on the day. 

Day Outlook Temperature Humidity Wind Play Golf 

D1 Sunny Hot High Weak No 

D2 Sunny Hot High Strong No 

D3 Overcast Hot High Weak Yes 

D4 Rain Mild High Weak Yes 

D5 Rain Cool Normal Weak Yes 

D6 Rain Cool Normal Strong No 

D7 Overcast Cool Normal Strong Yes 

D8 Sunny Mild High Weak No 

D9 Sunny Cool Normal Weak Yes 

D10 Rain Mild Normal Weak Yes 

D11 Sunny Mild Normal Strong Yes 

D12 Overcast Mild High Strong Yes 

D13 Overcast Hot Normal Weak Yes 

D14 Rain Mild High Strong No 
 

10 CO4 L3 
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Q7 

Part-IV 

Write the ID3 algorithm. Explain the appropriate problems for decision tree learning. 
10 CO3 L3 

 

Q8 

or 

What is linearly in separable problem? Design a two-layer Back propagation network 

for feed forward network. 

10 CO3 L2 

 

Q9 

Part-V 

What is the perceptron training rule. Write the Gradient decent Algorithm and visualize 

the Hypothesis space for gradient decent rule. 

10 CO3 L3 

 

Q10 

or 

Write the Back propagation algorithm for feed forward network with example. 
10 CO3 L2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Answer Key 
 

 

 

Q1 

Part-I 

Define a Well-Posed Learning Problem. Quote some successful applications of machine learning. 

Well-Posed Learning Definition: A computer program is said to learn from experience E with respect to some class of tasks T 

and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E. 

Examples: 

Checkers Game: A computer program that learns to play checkers might improve its performance as measured by its ability to 

win at the class of tasks involving playing checkers game, through experience obtained by playing games against itself: 

 

checkers learning problem:  
 Task T: playing checkers  
 Performance measure P: percent of games won against opponents  
 Training experience E: playing practice games against itself 

A handwriting recognition learning problem:  
 Task T: recognizing and classifying handwritten words within images  
 Performance measure P: percent of words correctly classified 

 
 Training experience E: a database of handwritten words with given classifications  

A robot driving learning problem:  
 Task T: driving on public four-lane highways using vision sensors 

 
 Performance measure P: average distance travelled before an error (as judged by human overseer) 

 
 Training experience E: a sequence of images and steering commands recorded while observing a human driver 

 

 

Q2 

DESIGNING A LEARNING SYSTEM 

 

The basic design issues and approaches to machine learning are illustrated by designing a program to learn to play 

checkers, with the goal of entering it in the world checkers tournament  
1. Choosing the Training Experience  
2. Choosing the Target Function   
3. Choosing a Function Approximation Algorithm  

1. Estimating training values  
2. Adjusting the weights  
 

1. Choosing the Training Experience 
 

 The first design choice is to choose the type of training experience from which the system will learn. 
 

 The type of training experience available can have a significant impact on success or failure of the learner. 

 

There are three attributes which impact on success or failure of the learner 
 
 

1. Whether the training experience provides direct or indirect feedback regarding the choices made by the performance 

system. 

 

For example, in checkers game:  
In learning to play checkers, the system might learn from direct training examples consisting of individual checkers 

board states and the correct move for each. 

 

Indirect training examples consisting of the move sequences and final outcomes of various games played. The 

information about the correctness of specific moves early in the game must be inferred indirectly from the fact that the 

game was eventually won or lost. 

 

Here the learner faces an additional problem of credit assignment, or determining the degree to which each move in the 

sequence deserves credit or blame for the final outcome.  



 

2. The degree to which the learner controls the sequence of training examples 

 

For example, in checkers game: 
 

The learner might depends on the teacher to select informative board states and to provide the correct move for each. 

 

Alternatively, the learner might itself propose board states that it finds particularly confusing and ask the teacher for 

the correct move. 

 

The learner may have complete control over both the board states and (indirect) training classifications, as it does when 

it learns by playing against itself with no teacher present. 

 

3. How well it represents the distribution of examples over which the final system performance P must be measured 

 

For example, in checkers game: 
 

In checkers learning scenario, the performance metric P is the percent of games the system wins in the world 

tournament. 

 

If its training experience E consists only of games played against itself, there is a danger that this training experience 

might not be fully representative of the distribution of situations over which it will later be tested. 
 

It is necessary to learn from a distribution of examples that is different from those on which the final system will be 

evaluated. 

2. Choosing the Target Function 

 

The next design choice is to determine exactly what type of knowledge will be learned and how this will be used by the 

performance program. 

 

Let’s consider a checkers-playing program that can generate the legal moves from any board state. 
 
The program needs only to learn how to choose the best move from among these legal moves. We must learn to choose among 

the legal moves, the most obvious choice for the type of information to be learned is a program, or function, that chooses the 

best move for any given board state. 

 

1. Let ChooseMove be the target function and the notation  is 

 

ChooseMove : B→ M  
which indicate that this function accepts as input any board from the set of legal board states B and produces as output 

some move from the set of legal moves M. 

ChooseMove is a choice for the target function in checkers example, but this function will turn out to be very difficult 

to learn given the kind of indirect training experience available to our system 

 

2. An alternative target function is an evaluation function that assigns a numerical score to any given board state  
Let the target function V and the notation  

V:B →R 

 

which denote that V maps any legal board state from the set B to some real value. Intend for this target function V to 

assign higher scores to better board states. If the system can successfully learn such a target function V, then it can 

easily use it to select the best move from any current board position. 

 

Let us define the target value V(b) for an arbitrary board state b in B, as follows:  
 If b is a final board state that is won, then V(b) = 100  
 If b is a final board state that is lost, then V(b) = -100  
 If b is a final board state that is drawn, then V(b) = 0  
 If b is a not a final state in the game, then V(b) = V(b' ), 

 
 

Where b' is the best final board state that can be achieved starting from b and playing optimally until the end of the game 



 

 

3. Choosing a Function Approximation Algorithm 

 

In order to learn the target function f we require a set of training examples, each describing a specific board state b and the 

training value Vtrain(b) for b. 

 

Each training example is an ordered pair of the form (b, Vtrain(b)). 
 
 

For instance, the following training example describes a board state b in which black has won the game (note x2 = 0 indicates 

that red has no remaining pieces) and for which the target function value Vtrain(b) is therefore +100. 

 

((x1=3, x2=0, x3=1, x4=0, x5=0, x6=0), +100) 

 

Function Approximation Procedure 

 

1. Derive training examples from the indirect training experience available to the learner  
2. Adjusts the weights wi to best fit these training examples 

 

1. Estimating training values 

A simple approach for estimating training values for intermediate board states is to assign the training value  of 

Vtrain(b) for any  intermediate board state b to be  V(Successor(b)) 

Where , 
 ̂ 

V is the learner's current approximation to V 
 

 Successor(b) denotes the next board state following b for which it is again the program's turn to move 

Rule for estimating training values 
Vtrain(b) ← V (Successor(b)) 

2. Adjusting the weights 
 

Specify the learning algorithm for choosing the weights wi to best fit the set of training examples {(b, Vtrain(b))} 
 

A first step is to define what we mean by the bestfit to the training data. 
 

One common approach is to define the best hypothesis, or set of weights, as that which minimizes the squared error E 

between the training values and the values predicted by the hypothesis. 

 
Several algorithms are known for finding weights of a linear function that minimize E. One such algorithm is called the least 

mean squares, or LMS training rule. For each observed training example it adjusts the weights a small amount in the 

direction that reduces the error on this training example 

 

 

LMS weight update rule :- For each training example (b, Vtrain(b))  
̂ 

Use the current weights to calculate V (b)  
For each weight wi, update it as 

 
̂ 

wi ← wi + ƞ (Vtrain (b) - V(b)) xi 

 

Here ƞ is a small constant (e.g., 0.1) that moderates the size of the weight update. 

 

Working of weight update rule   

 

 ̂  

When the error (Vtrain(b)- V(b)) is zero, no weights are changed.  

 

̂ ̂  

When (Vtrain(b) - V(b)) is positive (i.e., when V(b) is too low), then each weight  
is increased in proportion to the value of its corresponding feature. This will raise 

̂ 
the value of V(b), reducing the error. 

 



 

If the value of some feature xi is zero, then its weight is not altered regardless of the error, so that the only weights updated are 

those whose features actually occur on the training example board. 

 

Q3 

Part-II 
Write FIND-S algorithm and discuss the issues with the algorithm for Enjoy Sport problem. 

 

FIND-S Algorithm 

 

1. Initialize h to the most specific hypothesis in H  
2. For each positive training instance x 
 

For each attribute constraint ai in h 
 

If the constraint ai is satisfied by x 
 

Then do nothing 
 

Else replace ai in h by the next more general constraint that is satisfied by x 3. Output hypothesis h 

 

Unanswered by FIND-S 

 

1. Has the learner converged to the correct target concept?  
2. Why prefer the most specific hypothesis?  
3. Are the training examples consistent?  
4. What if there are several maximally specific consistent hypotheses? 

 

 

Q4 

CANDIDATE-ELIMINTION algorithm begins by initializing the version space to the set of all hypotheses in H; 

 

Initializing the G boundary set to contain the most general hypothesis in H G0 ?, ?, ?, ?, ?, ?  

 

Initializing the S boundary set to contain the most specific (least general) hypothesis S0 , , , , ,  

 

 When the second training example is observed, it has a similar effect of generalizing S further to S2, leaving G again 

unchanged i.e., G2 = G1 = G0 

 



 

 

Consider the third training example. 

 
 

Consider the fourth training example 

 
 

After processing these four examples, the boundary sets S4 and G4 delimit the version space of all hypotheses consistent 

with the set of incrementally observed training examples. 

 



 

 

 

 

 

 

 

 

 

 

 

Q5 

 

Part-III 

 Draw decision tree for the given dataset and calculate the entropy and information gain. 

 

  

 

 

 

 

 

 

 

 

 

 

Instance Classification a1 a2 

1 + T T 

2 + T T 

3 - T F 

4 + F F 

5 - F T 

6 - F T 



 

 
 

 

Q 6 

or 
Design the decision tree for the following dataset and predict whether Golf will be played on the day. 

Day Outlook Temperature Humidity Wind Play Golf 

D1 Sunny Hot High Weak No 

D2 Sunny Hot High Strong No 

D3 Overcast Hot High Weak Yes 

D4 Rain Mild High Weak Yes 

D5 Rain Cool Normal Weak Yes 

D6 Rain Cool Normal Strong No 

D7 Overcast Cool Normal Strong Yes 

D8 Sunny Mild High Weak No 

D9 Sunny Cool Normal Weak Yes 

D10 Rain Mild Normal Weak Yes 

D11 Sunny Mild Normal Strong Yes 

D12 Overcast Mild High Strong Yes 

D13 Overcast Hot Normal Weak Yes 

   D14 Rain Mild High Strong No 



 

 

 



 

 

 

  
 

 

 

 

Q7 

Issues in learning decision trees include  
1 Avoiding Overfitting the Data  

2 Reduced error pruning  



 

3 Rule post-pruning 

4 Incorporating Continuous-Valued Attributes 

5 Alternative Measures for Selecting Attributes 

6 Handling Training Examples with Missing Attribute Values 

7 Handling Attributes with Differing Costs 
 

 Avoiding Overfitting the Data 
 

8 The ID3 algorithm grows each branch of the tree just deeply enough to perfectly classify the training examples 

but it can lead to difficulties when there is noise in the data, or when the number of training examples is too 

small to produce a representative sample of the true target function. This algorithm can produce trees that overfit 

the training examples. 

How can it be possible for tree h to fit the training examples better than h', but for it to perform more poorly over 

subsequent examples?  
9 Overfitting can occur when the training examples contain random errors or noise  
10 When small numbers of examples are associated with leaf nodes. 

 
Approaches to avoiding overfitting in decision tree learning 
 

11 Pre-pruning (avoidance): Stop growing the tree earlier, before it reaches the point where it perfectly classifies 

the training data  
12 Post-pruning (recovery): Allow the tree to overfit the data, and then post-prune the tree 

 

Criterion used to determine the correct final tree size 
 

13 Use a separate set of examples, distinct from the training examples, to evaluate the utility of post-pruning 

nodes from the tree 
 

14 Use all the available data for training, but apply a statistical test to estimate whether expanding (or pruning) a 

particular node is likely to produce an improvement beyond the training set 
 

15 Use measure of the complexity for encoding the training examples and the decision tree, halting growth of the 

tree when this encoding size is minimized. This approach is called the Minimum Description Length 

MDL – Minimize : size(tree) + size (misclassifications(tree)) 

Reduced-Error Pruning 
 

16 Reduced-error pruning, is to consider each of the decision nodes in the tree to be candidates for pruning 
 

17 Pruning a decision node consists of removing the subtree rooted at that node, making it a leaf node, and 

assigning it the most common classification of the training examples affiliated with that node 
 

18 Nodes are removed only if the resulting pruned tree performs no worse than-the original over the validation 

set. 
 

19 Reduced error pruning has the effect that any leaf node added due to coincidental regularities in the training set 

is likely to be pruned because these same coincidences are unlikely to occur in the validation set 

 

2. Incorporating Continuous-Valued Attributes 

 

Continuous-valued decision attributes can be incorporated into the learned tree. 

 

There are two methods for Handling Continuous Attributes  
20 Define new discrete valued attributes that partition the continuous attribute value into a discrete set of intervals.  
E.g., {high ≡ Temp > 35º C, med ≡ 10º C < Temp ≤ 35º C, low ≡ Temp ≤ 10º C} 

 

21 Using thresholds for splitting nodes  
e.g., A ≤ a produces subsets A ≤ a and A > a 

What threshold-based Boolean attribute should be defined based on Temperature? 

 
22 Pick a threshold, c, that produces the greatest information gain 



 

23 In the current example, there are two candidate thresholds, corresponding to the values of Temperature at 

which the value of PlayTennis changes: (48 + 60)/2, and (80 + 90)/2. 

24 The information gain can then be computed for each of the candidate attributes, Temperature >54, and 

Temperature >85 and the best can be selected (Temperature >54) 

 

2. Alternative Measures for Selecting Attributes 

• The problem is if attributes with many values, Gain will select it ? 

• Example: consider the attribute Date, which has a very large number of possible values. (e.g., March 4, 1979). 

• If this attribute is added to the PlayTennis data, it would have the highest information gain of any of the 

attributes. This is because Date alone perfectly predicts the target attribute over the training data. Thus, it 

would be selected as the decision attribute for the root node of the tree and lead to a tree of depth one, which 

perfectly classifies the training data. 

• This decision tree with root node Date is not a useful predictor because it perfectly separates the training data, 

but poorly predict on subsequent examples. 

 

3. Handling Training Examples with Missing Attribute Values 
 
 
The data which is available may contain missing values for some attributes Example: Medical 

diagnosis  
 <Fever = true, Blood-Pressure = normal, …, Blood-Test = ?, …>  
 Sometimes values truly unknown, sometimes low priority (or cost too high) 

 

Strategies for dealing with the missing attribute value 
 

 If node n test A, assign most common value of A among other training examples sorted to node n  
 Assign most common value of A among other training examples with same target value 

 
 Assign a probability pi to each of the possible values vi of A rather than simply assigning the most common 

value to A(x) 

5. Handling Attributes with Differing Costs 

 

 In some learning tasks the instance attributes may have associated costs. 
 

 For example: In learning to classify medical diseases, the patients described in terms of attributes such as 

Temperature, BiopsyResult, Pulse, BloodTestResults, etc. 
 

 These attributes vary significantly in their costs, both in terms of monetary cost and cost to patient comfort 
 
Decision trees use low-cost attributes where possible, depends only on high-cost attributes only when needed to 

produce reliable classifications.  

 

Q8 

or 

What is linearly in separable problem? Design a two-layer Back propagation network for feed forward network. 

 

 

Q9 
• Perceptron learning converges to a consistent model  if D (training set) is linearly separable. 

• If the data is not linearly separable than this will not converge.  

• If the training examples are not linearly separable, the delta rule converges toward a best-fit 

approximation to the target concept. 

• The key idea behind the delta rule is to use gradient descent to search the hypothesis space of possible 

weight vectors to find the weights that best fit the training examples. 

 



 

 
• Gradient descent search determines a weight vector that minimizes E by starting with an arbitrary initial 

weight vector, then repeatedly modifying it in small steps. 

• At each step, the weight vector is altered in the direction that produces the steepest descent along the 

error surface depicted in above figure. This process continues until the global minimum error is reached. 

 

Derivation of the Gradient Descent Rule 

How to calculate the direction of steepest descent along the error surface? 
The direction of steepest can be found by computing the derivative of E with respect to each component 

of the vector w⃗⃗⃗. This vector derivative is called the gradient of E with respect to w⃗⃗⃗  , written as 

 

 

 

 

The gradient specifies the direction of steepest increase of E, the training rule for gradient 

descent is 

 

• Here η is a positive constant called the learning rate, which determines the step size in the 

gradient descent search. 

• The negative sign is present because we want to move the weight vector in the direction 

that decreases E. 

 

This training rule can also be written in its component form 

 



 

 

 

 

Q10 

or 

Write the Back propagation algorithm for feed forward network with example. 

 
 



 

 
 


