

 1(a) Describe Arithmetic Operators, Assignment operators, Comparison operator,
and logical Operators with example
 Solution:
Arithmetic operators are used to performing mathematical operations like addition,
subtraction, multiplication, and division.

Operator Description Syntax

+ Addition: adds two operands x + y

– Subtraction: subtracts two operands x – y

* Multiplication: multiplies two operands x * y

/ Division (float): divides the first operand by the second x / y

// Division (floor): divides the first operand by the second x // y

%
Modulus: returns the remainder when the first operand is
divided by the second x % y

** Power: Returns first raised to power second x ** y

Assignment Operators
Assignment operators are used to assigning values to the variables.

Operator Description Syntax

=
Assign value of right side of expression to left side
operand x = y + z

+=
Add AND: Add right-side operand with left side
operand and then assign to left operand

a+=b
a=a+b

-=
Subtract AND: Subtract right operand from left
operand and then assign to left operand a-=b a=a-b

*=
Multiply AND: Multiply right operand with left
operand and then assign to left operand a*=b a=a*b

/= Divide AND: Divide left operand with right operand a/=b

https://www.geeksforgeeks.org/python-arithmetic-operators/
https://www.geeksforgeeks.org/assignment-operators-in-python/

and then assign to left operand a=a/b

%=
Modulus AND: Takes modulus using left and right
operands and assign the result to left operand

a%=b
a=a%b

//=

Divide(floor) AND: Divide left operand with right
operand and then assign the value(floor) to left
operand

a//=b
a=a//b

**=

Exponent AND: Calculate exponent(raise power)
value using operands and assign value to left
operand

a**=b
a=a**b

&=
Performs Bitwise AND on operands and assign value
to left operand

a&=b
a=a&b

|=
Performs Bitwise OR on operands and assign value to
left operand

a|=b
a=a|b

^=
Performs Bitwise xOR on operands and assign value
to left operand

a^=b
a=a^b

>>=
Performs Bitwise right shift on operands and assign
value to left operand

a>>=b
a=a>>b

<<=
Performs Bitwise left shift on operands and assign
value to left operand

a <<= b a=
a << b

Comparison Operators
Comparison of Relational operators compares the values. It either
returns True or False according to the condition.

Operator Description Syntax

>
Greater than: True if the left operand is greater than the
right x > y

< Less than: True if the left operand is less than the right x < y

== Equal to: True if both operands are equal x == y

https://www.geeksforgeeks.org/relational-operators-in-python/
https://www.geeksforgeeks.org/relational-operators-in-python/

!= Not equal to – True if operands are not equal x != y

>=
Greater than or equal to True if the left operand is greater
than or equal to the right x >= y

<=
Less than or equal to True if the left operand is less than or
equal to the right x <= y

1(b) With syntax , Explain the finite and infinite looping constructs in python. What
is the need for break and continue statements
Solution :
There are two different types of loop, the finite ones and the infinite ones.

The most common kind of loop is the finite loop (i.e., a loop that we explicitly know,
in advance, which values the control variables will have during the loop execution)

1. foriin range(0,10):
2. print(i)

Another example of a finite loop can be done with the while command. The code
here produces the same result as the previous finite loop example using for:

1. i=0
2. whilei<10:
3. print(i)
4. i+=1

An infinite loop, on the other hand, is characterized by not having an explicit end,
unlike the finite ones exemplified previously, where the control variable i clearly
went from 0 to 9 (note that at the end i = 10, but that value of i wasn't printed). In an
infinite loop the control is not explicitly clear, as in the example appearing here:

1. i=0
2. whileTrue:
3. print(i)
4. ifi==9:
5. break
6. else:
7. i=i+1

 Break and Continue statements

Break and Continue statements can alter the flow of a normal loop.

Loops iterate over a block of code until the test expression is false, but sometimes we

wish to terminate the current iteration or even the whole loop without checking test

expression.

The continue statement is used to skip the rest of the code inside a loop for the

current iteration only. Loop does not terminate but continues on with the next
iteration.

1(c) Write a Python program to check whether a given number is even or odd

1. num = int(input("Enter a number: "))
2. if (num % 2) == 0:
3. print("{0} is Even number".format(num))
4. else:
5. print("{0} is Odd number".format(num))

2(a) How to declare and call functions in python program? Illustrate with an
example script.
Solution:
A function is a block of code which only runs when it is called. You can pass data,
known as parameters, into a function. A function can return data as a result.
In Python a function is defined using the def keyword:

def my_function():
 print("Hello from a function")

To call a function, use the function name followed by parenthesis:

def my_function():
 print("Hello from a function")

my_function()

Information can be passed into functions as arguments.

Arguments are specified after the function name, inside the parentheses. You can
add as many arguments as you want, just separate them with a comma.

def my_function(fname):
 print(fname + " Refsnes")
my_function("Emil")
my_function("Tobias")
my_function("Linus")

2(b) Illustrate args and kwargs parameters in python programming language with
an example.
Solution:

By default, a function must be called with the correct number of arguments.
Meaning that if your function expects 2 arguments, you have to call the function

with 2 arguments, not more, and not less.If you do not know how many arguments
that will be passed into your function, add a * before the parameter name in the
function definition.

This way the function will receive a tuple of arguments, and can access the items
accordingly:

def my_function(*kids):
 print("The youngest child is " + kids[2])
my_function("Emil", "Tobias", "Linus")

If you do not know how many keyword arguments that will be passed into your
function, add two asterisk: ** before the parameter name in the function definition.

This way the function will receive a dictionary of arguments, and can access the items
accordingly:

def my_function(**kid):
 print("His last name is " + kid["lname"])
my_function(fname = "Tobias", lname = "Refsnes")

2(c) Develop a python program to calculate the area of square, rectangle, and circle
using function
Solution:
Example:
Input: shape name = "Rectangle"
 length = 10
 breadth = 15
Output: Area: 150

Input: shape name = "Square"
 side = 10
Output: Area: 100

Approach:
In this program, We will ask the user to input the shape’s name. If it exists in our
program then we will proceed to find the entered shape’s area according to their
respective formulas. If that shape doesn’t exist then we will print “Sorry! We
cannot find this shape.” message on the screen.

define a function for calculating
the area of a shapes

def calculate_area(name):
 name = name.lower() # converting all characters into lower cases
 if name == "rectangle":
 l = int(input("Enter rectangle's length: "))
 b = int(input("Enter rectangle's breadth: "))

 rect_area = l * b
 print(f"The area of rectangle is {rect_area}.")

 elif name == "square": # calculate area of square
 s = int(input("Enter square's side length: "))
 sqt_area = s * s
 print(f"The area of square is {sqt_area}.")

 elif name == "triangle":
 h = int(input("Enter triangle's height length: "))
 b = int(input("Enter triangle's breadth length: "))

 tri_area = 0.5 * b * h # calculate area of triangle
 print(f"The area of triangle is {tri_area}.")

 elif name == "circle":
 r = int(input("Enter circle's radius length: "))
 pi = 3.14
 circ_area = pi * r * r # calculate area of circle
 print(f"The area of triangle is {circ_area}.")

 elif name == 'parallelogram':
 b = int(input("Enter parallelogram's base length: "))
 h = int(input("Enter parallelogram's height length: "))

 else:
 print("Sorry! This shape is not available")

// Main Code
print("Calculate Shape Area")
shapename = input("Enter the name of shape whose area you want to find: ")
calculate_area(shapename) # function calling

Output:

Calculate Shape Area

Enter the name of shape whose area you want to find: rectangle

Enter rectangle's length: 10

Enter rectangle's breadth: 15

The area of rectangle is 150.

3(a) Explain any five operaions performed on string with an example .
Solution:

1. captalize()
The capitalize() method returns a string where the first character is upper

case, and the rest is lower case.
Syntax
string.capitalize()
example:
txt = "python is FUN!"
x = txt.capitalize()
print(x)

2. The count() method returns the number of times a specified value appears in
the string.
Syntax
string.count(value, start, end)
example:
txt = "python is FUN!"
x = txt.count()
print(x)

3. The isalpha() method returns True if all the characters are alphabet letters (a-
z).
Syntax
string.isalpha()
example:
txt = "python is FUN!"
x = txt.isalpha()
print(x)

4. The isalnum() method returns True if all the characters are alphanumeric,
meaning alphabet letter (a-z) and numbers (0-9). Example of characters that
are not alphanumeric: (space)!#%&? etc.
Syntax
string.isalnum()
example:
txt = "python is FUN*10!"
x = txt.isalnum()
print(x)

5. The isdigit() method returns True if all the characters are digits, otherwise
False. Exponents, like ², are also considered to be a digit.
Syntax
string.isdigit()
example:

txt = "python is FUN*10!"
x = txt.isdigit()
print(x)

3(b) Demonstrate constructors in inheritance with the help of python program. Take
the input as student name, subject name, marks of three subjects and calculate the

percentage.
Solution :
class Base:
 def __init__(self,sname,subname,m1,m2,m3):
 self.sname=sname
 self.subname=subname
 self.m1=m1
 self.m2=m2
 self.m3=m3
 def display(self):
 print("Student name: ",self.sname)
 print("Student subject name: ",self.subname)
 print("Student marks 1: ",self.m1)
 print("Student marks 2: ",self.m2)
 print("Student marks 3: ",self.m3)
class Derived(Base):
 def __init__(self,sname,subname,m1,m2,m3):
 Base.__init__(self,sname,subname,m1,m2,m3)
 def percentage(self):
 print(((self.m1+self.m2+self.m3)/300)*100,"%")
obj1=Base("Pooja",'Python',98,99,100)
obj2=Derived("Pooja",'Python',98,99,100)
obj2.display()
obj2.percentage()

4(a) Differentiate between list tuple sets and Dictionary

A list is a collection of ordered data. A tuple is an ordered collection of data. A set is
an unordered collection. A dictionary is an unordered collection of data that stores
data in key-value pairs

4(b)

classCompute:

defproduct(self, x =None, y =None):
ifx !=Noneandy !=None:

returnx *y
elifx !=None:

returnx *x
else:

return0
obj=Compute()
print("productValue:", obj.product())
print("productValue:", obj.product(4))
print("productValue:", obj.product(3, 5))

5(a)
Reshaping of Arrays
Another useful type of operation is reshaping of arrays. The most flexible way of
doing this is with the reshape() method. For example, if you want to put the
numbers
1 through 9 in a 3×3 grid, you can do the following:
In[38]: grid = np.arange(1, 10).reshape((3, 3))
print(grid)
Another common reshaping pattern is the conversion of a one-dimensional array
into a two-dimensional row or column matrix. You can do this with the reshape
method, or more easily by making use of the newaxis keyword within a slice
operation:
x = np.array([1, 2, 3])
x.reshape((1, 3))
x[np.newaxis, :]

Concatenation of arrays
Concatenation, or joining of two arrays in NumPy, is primarily accomplished
through the routines np.concatenate, np.vstack, and np.hstack. np.concatenate
takes a tuple or list of arrays as its first argument, as we can see here:
x = np.array([1, 2, 3])
y = np.array([3, 2, 1])
np.concatenate([x, y])
Out[43]: array([1, 2, 3, 3, 2, 1])
For working with arrays of mixed dimensions, it can be clearer to use the np.vstack
(vertical stack) and np.hstack (horizontal stack) functions:
x = np.array([1, 2, 3])
grid = np.array([[9, 8, 7],
[6, 5, 4]])
np.vstack([x, grid])
Out[48]: array([[1, 2, 3],
[9, 8, 7],
[6, 5, 4]])

y = np.array([[99],

[99]])
np.hstack([grid, y])
Out[49]: array([[9, 8, 7, 99],
[6, 5, 4, 99]])

The opposite of concatenation is splitting, which is implemented by the functions
np.split, np.hsplit, and np.vsplit. For each of these, we can pass a list of indices
giving the split points:
x = [1, 2, 3, 99, 99, 3, 2, 1]
x1, x2, x3 = np.split(x, [3, 5])
print(x1, x2, x3)

grid = np.arange(16).reshape((4, 4))
grid
Out[51]: array([[0, 1, 2, 3],
[4, 5, 6, 7],
[8, 9, 10, 11],
[12, 13, 14, 15]])

upper, lower = np.vsplit(grid, [2])
print(upper)
print(lower)

5(b)
#sort
import numpy as np
a=[5,4,2,8]
np.sort(a)
np.argsort(a)
print(np.sort_complex(a))
b=np.array([[9,6,3],[7,9,2]])
print("sorted array:",np.sort(b))
print("index sort:",np.argsort(b))
print("complex sort:",np.sort_complex(b))
print("falttened sort:",np.sort(b,axis=0))

#search
import numpy as np
a=np.array([1,2,3,4,5,6,4,3,4])
x=np.where(a==4)
print(x)
y=np.searchsorted(a,4)
print(y)
z=np.searchsorted(a,[4,6,1])
print(z)

#splitting
import numpy as np
x=np.arange(9)
print(x)
print(np.split(x,3))
print(np.split(x,[3,5,6,10]))

x=np.arange(9)
print(np.array_split(x,4))

a=np.array(([1,3,5,7,9,11],[2,4,6,8,10,12]))
print("splitting along horizontal axis into 2 parts:\n",np.hsplit(a,2))
print("splitting alonf vertical axis into 2 parts:\n",np.vsplit(a,2))

#broadcasting
import numpy as np

x=np.arange(4)
print(x)
y=np.ones(5)
print(y)
print(x.reshape(4,1))
z=np.ones((3,4))
print(np.ones((3,4)))
print(z.shape)

6a)
Series
A Series is a one-dimensional array-like object containing an array of data (of any
NumPy data type) and an associated array of data labels, called its index. The
simplest Series is formed from only an array of data:
obj = Series([4, 7, -5, 3])
obj

ouput
0 4
1 7
2 -5
3 3
The string representation of a Series displayed interactively shows the index on the
left
and the values on the right. Since we did not specify an index for the data, a default
one consisting of the integers 0 through N – 1
In [6]: obj.values

Out[6]: array([4, 7, -5, 3])
In [7]: obj.index
Out[7]: Int64Index([0, 1, 2, 3])

• Adding index
obj2 = Series([4, 7, -5, 3], index=['d', 'b', 'a', 'c'])
obj2
Out[9]:
d 4
b 7
a -5
c 3

• Compared with a regular NumPy array, you can use values in the
index when selecting single values or a set of values:

In [11]: obj2['a']
Out[11]: -5
In [12]: obj2['d'] = 6
In [13]: obj2[['c', 'a', 'd']]
Out[13]:
c 3
a -5
d 6
NumPy array operations, such as filtering with a boolean array, scalar
multiplication, or applying math functions, will preserve the index-value link:
In [16]: obj2 * 2
Out[16]:
d 12
b 14
c 6
Another way to think about a Series is as a fixed-length, ordered dict, as it is a
mapping of index values to data values. It can be substituted into many functions
that expect a
dict:
In [18]: 'b' in obj2
Out[18]: True

sdata = {'Ohio': 35000, 'Texas': 71000, 'Oregon': 16000, 'Utah': 5000}
In [21]: obj3 = Series(sdata)
In [22]: obj3
Out[22]:
Ohio 35000
Oregon 16000

Both the Series object itself and its index have a name attribute, which integrates
with other key areas of pandas functionality:

In [32]: obj4.name = 'population'In [33]: obj4.index.name = 'state'
In [34]: obj4
Out[34]:
state
California NaN
Ohio 35000
Oregon 16000
Texas 71000
Name: population

DataFrame
A DataFrame represents a tabular, spreadsheet-like data structure containing an
ordered collection of columns, each of which can be a different value type (numeric,
string, boolean, etc.). The DataFrame has both a row and column index; it can be
thought of as a dict of Series (one for all sharing the same index). Compared with
other such DataFrame-like structures you may have used before (like R’s
data.frame), roworiented and column-oriented operations in DataFrame are treated
roughly symmetrically.
data = {'state': ['Ohio', 'Ohio', 'Ohio', 'Nevada', 'Nevada'],
'year': [2000, 2001, 2002, 2001, 2002],
'pop': [1.5, 1.7, 3.6, 2.4, 2.9]}
frame = DataFrame(data)
In [38]: frame
Out[38]:
pop state year
0 1.5 Ohio 2000
1 1.7 Ohio 2001
2 3.6 Ohio 2002
3 2.4 Nevada 2001
4 2.9 Nevada 2002

6b)

importnumpyas np
a =np.arange(9).reshape(3,3)

print'First array:'
print a
print'\n'

print'Second array:'
b =np.array([10,10,10])
print b
print'\n'

print'Add the two arrays:'

printnp.add(a,b)
print'\n'

print'Subtract the two arrays:'
printnp.subtract(a,b)
print'\n'

print'Multiply the two arrays:'
printnp.multiply(a,b)
print'\n'

print'Divide the two arrays:'
printnp.divide(a,b)

7a)
The pd.merge() function implements a number of types of joins: the one-to-one,
many-to-one, and many-to-many joins. All three types of joins are accessed via an
identical call to the pd.merge() interface; the type of join performed depends on the
form of the input data.
One-to-one joins
Perhaps the simplest type of merge expression is the one-to-one join, which is in
many ways very similar to the column-wise concatenation
df1 = pd.DataFrame({'employee': ['Bob', 'Jake', 'Lisa', 'Sue'],
'group': ['Accounting', 'Engineering', 'Engineering', 'HR']})
df2 = pd.DataFrame({'employee': ['Lisa', 'Bob', 'Jake', 'Sue'],
'hire_date': [2004, 2008, 2012, 2014]})
print(df1); print(df2)
df3 = pd.merge(df1, df2)
df3
The pd.merge() function recognizes that each DataFrame has an “employee”
column,
and automatically joins using this column as a key. The result of the merge is a new
DataFrame that combines the information from the two inputs.
Many-to-one joins
Many-to-one joins are joins in which one of the two key columns contains duplicate
entries. For the many-to-one case, the resulting DataFramewill preserve those
duplicate
entries as appropriate. Consider the following example of a many-to-one join:
In[4]: df4 = pd.DataFrame({'group': ['Accounting', 'Engineering', 'HR'],
'supervisor': ['Carly', 'Guido', 'Steve']})
print(df3); print(df4); print(pd.merge(df3, df4))
Many-to-many joins
Many-to-many joins are a bit confusing conceptually, but are nevertheless well
defined. If the key column in both the left and right array contains duplicates, then
the result is a many-to-many merge. This will be perhaps most clear with a concrete

example. Consider the following, where we have a DataFrameshowing one or more
skills associated with a particular group.
By performing a many-to-many join, we can recover the skills associated with any
individual person:
In[5]: df5 = pd.DataFrame({'group': ['Accounting', 'Accounting',
'Engineering', 'Engineering', 'HR', 'HR'],
'skills': ['math', 'spreadsheets', 'coding', 'linux',
'spreadsheets', 'organization']})
print(df1); print(df5); print(pd.merge(df1, df5))

7b)
Reshaping and Pivoting
There are a number of basic operations for rearranging tabular data. These are
alternatingly referred to as reshape or pivot operations.
Reshaping with Hierarchical Indexing
Hierarchical indexing provides a consistent way to rearrange data in a DataFrame.
There are two primary actions:
stack
This “rotates” or pivots from the columns in the data to the rows
unstack
This pivots from the rows into the columns
Example:
data = pd.DataFrame(np.arange(6).reshape((2, 3)) index=pd.Index(['Ohio',
'Colorado'], name='state'), columns=pd.Index(['one', 'two', 'three'], name='number'))
result = data.stack()
A pivot table is a similar operation that is commonly seen in spreadsheets and
other programs that operate on tabular data. The pivot table takes simple
columnwise
data as input, and groups the entries into a two-dimensional table that provides
a multidimensional summarization of the data. The difference between pivot tables
and GroupBy can sometimes cause confusion; it helps me to think of pivot tables as
essentially a multidimensional version of GroupBy aggregation. That is, you
splitapply-
combine, but both the split and the combine happen across not a onedimensional
index, but across a two-dimensional grid.
import numpyas np
import pandas as pd
import seaborn as sns
titanic = sns.load_dataset('titanic')
titanic.pivot_table('survived', index='sex', columns='class')
the grouping in pivot tables can be specified with multiple levels,
and via a number of options
age = pd.cut(titanic['age'], [0, 18, 80])
titanic.pivot_table('survived', ['sex', age], 'class')
fare = pd.qcut(titanic['fare'], 2)
titanic.pivot_table('survived', ['sex', age], [fare, 'class'])

8a)
Data Transformation
Transforming data such as Filtering, cleaning, and other transformations are
important for data analytics.
→Removing Duplicates
The DataFrame method duplicated returns a boolean Series indicating whether each
row is a duplicate (has been observed in a previous row) or not:

drop_duplicates() method removes duplicate elements and returns a duplicated()
false for all the rows. DataFrame column name can be passed as argument to the
drop_duplicates() which will remove duplicate elements based on that column.
→Transforming Data Using a Function or Mapping
For many datasets, you may wish to perform some transformation based on the
values in an array, Series, or column in a DataFrame. For example convert Yes/No to
1/0.
The map() function is used to map values of Series according to input
correspondence. Used for substituting each value in a Series with another value, that
may be derived from a function, a dict or a Series.
Example:
import pandas as pd
data = pd.Series(['Yes', 'No', 'Yes','No'])
data.map({'Yes': 1, 'No': 0})

→Replacing Values
Pandas replace() function is used to replace a string, regex, list, dictionary, series,
number etc. from a dataframe/series.
Example:
data = pd.Series([1., -999., 2., -999., -1000., 3.])
data.replace(-999, np.nan)
→Renaming Axis Indexes
Like values in a Series, axis labels can be similarly transformed by a function or
mapping of some form to produce new, differently labeled objects. You can also
modify the axes in-place without creating a new data structure.
Pandas rename() method is used to rename any index, column or row.
Example:
data = pd.DataFrame(np.arange(12).reshape((3, 4)),index=['1', 2, 'New York'],
columns=['one', 'two', 'three', 'four'])
data.rename(index=str.title, columns=str.upper)
→Discretization and Binning
Pandas cut() function is used to separate the array elements into different bins . The
cut function is mainly used to perform statistical analysis on scalar data.
Example 1: Let’s say we have an array of 10 random numbers from 1 to 100 and we
wish to separate data into 5 bins of (1,20] , (20,40] , (40,60] , (60,80] , (80,100] .
df= pd.DataFrame({'number': np.random.randint(1, 100, 10)})
df['bins'] = pd.cut(x=df['number'], bins=[1, 20, 40, 60, 80, 100])
print(df['bins'].unique())

8b)

→lower()
import pandas as pd
import numpy as np
s = pd.Series([CMRIT, 'Mysore, 'MCA', 'MCA@cmrit.in', np.nan, '1234','CM'])
s.str.lower()
print s
Output:
0 cmrit
1 mysore
2 mca
3 mca@cmrit.in
4 NaN
5 1234
6 cm
→len()
s.str.len()
0 5.0
1 6.0
2 3.0
3 12.0
4 NaN
5 4.0
6 2.0
→count()
s.str.count('M')
OUTPUT
0 1.0
1 1.0
2 1.0
3 1.0
4 NaN
5 0.0
6 1.0
→startswith()
s.str.startswith('M')
Output:
0 False
1 True
2 True
3 True
4 NaN
5 False
6 False
→endswith()
s.str.endswith('A')
Output:
0 False

1 False
2 True
3 False
4 NaN
5 False
6 False

9a)
i. Matplotlib

Matplotlib is a multiplatform data visualization library built on NumPy arrays, and
designed to work with the broader SciPy stack. It was conceived by John Hunter in
2002, originally as a patch to IPython for enabling interactive MATLAB-style
plotting via gnuplot from the IPython command line. IPython’s creator, Fernando
Perez, was at the time scrambling to finish his PhD, and let John know he wouldn’t
have time to review the patch for several months. John took this as a cue to set out
on his own, and the Matplotlib package was born, with version 0.1 released in 2003.
It received an early boost when it was adopted as the plotting package of choice of
the Space Telescope Science Institute (the folks behind the Hubble Telescope), which
financially supported Matplotlib’s development and greatly expanded its
capabilities.
One of Matplotlib’s most important features is its ability to play well with many
operating systems and graphics backends. Matplotlib supports dozens of backends
and output types, which means you can count on it to work regardless of which
operating system you are using or which output format you wish. This cross-
platform, everything-to-everyone approach has been one of the great strengths of
Matplotlib. It has led to a large userbase, which in turn has led to an active developer
base and Matplotlib ‘spowerful tools and ubiquity within the scientific Python
world.

ii. Seaborn Visualization
Matplotlib has proven to be an incredibly useful and popular visualization tool, but
even avid users will admit it often leaves much to be desired. There are several valid
complaints about Matplotlib that often come up:
• Prior to version 2.0, Matplotlib’s defaults are not exactly the best choices. It was
based off of MATLAB circa 1999, and this often shows.
• Matplotlib’s API is relatively low level. Doing sophisticated statistical visualization
is possible, but often requires a lot of boilerplate code.
• Matplotlib predated Pandas by more than a decade, and thus is not designed for
use with Pandas DataFrames. In order to visualize data from a Pandas DataFrame,
you must extract each Series and often concatenate them together into the right
format. It would be nicer to have a plotting library that can intelligently use the
DataFrame labels in a plot. Seaborn has many
of its own high-level plotting routines, but it can also overwrite Matplotlib’s default
parameters and in turn get even simple Matplotlib scripts to produce vastly superior
output.

9b)

df=pd.read_csv("/content/Toyota.csv",index_col=0,na_values=["??","????)
df.head()

df.dropna(axis=0,inplace=True)
df.head()

#scatter plot
plt.scatter(df["Age"],df["Price"],color="blue")
plt.title("scatter plot of the price vs age of the cars")
plt.xlabel('Age(Months)')
plt.ylabel('Price(Euros)')
plt.show()

#histogarm
plt.hist(df['KM'])
plt.title("Histogram of km's")
plt.xlabel("kiklometer")
plt.ylabel("price")
plt.show()

#bar graph

plt.bar(index,counts,color=['red','blue','cyan'])
plt.title("bar plot of the fuel type")
plt.xlabel("fuel type")
plt.ylabel("frequency")

plt.xticks(index,fuelType)
plt.show()

10a)
i. hist()

A histogram is a classic visualization tool that represents the distribution of one or
more variables by counting the number of observations that fall within discrete
bins.

seaborn.histplot(data=None, *, x=None, y=None)

penguins =sns.load_dataset("penguins")
sns.histplot(data=penguins, x="flipper_length_mm")

sns.histplot(data=penguins, x="flipper_length_mm", hue="species")

ii. kdeplot()

A kernel density estimate (KDE) plot is a method for visualizing the distribution of
observations in a dataset, analagous to a histogram. KDE represents the data using
a continuous probability density curve in one or more dimensions

seaborn.kdeplot(x=None, *, y=None)

tips =sns.load_dataset("tips")
sns.kdeplot(data=tips, x="total_bill")

iii. distplot()

This function combines the matplotlib hist function (with
automatic calculation of a good default bin size) with the
seaborn kdeplot() and rugplot() functions.
seaborn.distplot(a=None, bins=None, hist=True, kde=True)

importseabornassns,numpyasnp
>>>sns.set_theme(); np.random.seed(0)
>>>x =np.random.randn(100)
>>>ax=sns.distplot(x)

iv. jointplot()

Draw a plot of two variables with bivariate and univariate graphs.
seaborn.jointplot(*, x=None, y=None, data=None, kind='scatter')

penguins =sns.load_dataset("penguins")
sns.jointplot(data=penguins, x="bill_length_mm", y="bill_depth_mm")

https://seaborn.pydata.org/generated/seaborn.kdeplot.html#seaborn.kdeplot
https://seaborn.pydata.org/generated/seaborn.rugplot.html#seaborn.rugplot

10b)
import seaborn as sns
penguins = sns.load_dataset("penguins")
sns.lineplot(data=penguins, x="bill_length_mm", y="bill_depth_mm")

sns.scatterplot(data=penguins, x="bill_length_mm", y="bill_depth_mm")

sns.histplot(data=penguins)

